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Abstract This paper generalizes a previously-conceived,
continuation-based optimization technique for scalar objec-
tive functions on constraint manifolds to cases of periodic
and quasiperiodic solutions of delay-differential equations.
A Lagrange formalism is used to construct adjoint condi-
tions that are linear and homogenous in the unknown La-
grange multipliers. As a consequence, it is shown how crit-
ical points on the constraint manifold can be found through
several stages of continuation along a sequence of connected
one-dimensional manifolds of solutions to increasing sub-
sets of the necessary optimality conditions. Due to the pres-
ence of delayed and advanced arguments in the original and
adjoint differential equations, care must be taken to deter-
mine the degree of smoothness of the Lagrange multipliers
with respect to time. Such considerations naturally lead to a
formulation in terms of multi-segment boundary-value prob-
lems (BVPs), including the possibility that the number of
segments may change, or that their order may permute, dur-
ing continuation. The methodology is illustrated using the
software package COCO on periodic orbits of both linear and
nonlinear delay-differential equations, keeping in mind that
closed-form solutions are not typically available even in the
linear case. Finally, we demonstrate optimization on a fam-
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ily of quasiperiodic invariant tori in an example unfolding of
a Hopf bifurcation with delay and parametric forcing. The
quasiperiodic case is a further original contribution to the
literature on optimization constrained by partial differential
BVPs.

Keywords delay-differential equations · Lagrange multipli-
ers · adjoint equations · successive continuation

1 Introduction

The optimization of time-delay systems has been the sub-
ject of intensive research for many years. Such systems arise
naturally in control applications where unmodeled actuator
dynamics results in delays between input signals and actu-
ator responses [19], car following models that account for
driver reaction times [15], and machine tool dynamics due
to the regenerative effect [20]. The wide range of applica-
tions has motivated the development of novel techniques for
their optimization. For example, Göllmann et al. [4] used
a formulation based on the Pontryagin minimum principle
to derive necessary optimality conditions for optimal con-
trol problems with delays in state and control variables.
The obtained equations were discretized and transformed
into a large-scale nonlinear programming model, which was
then solved using off-the-shelf solvers. In another investiga-
tion, Yusoff and Sims [22] combined the semi-discretization
method [10] for time-periodic delay equations with differen-
tial evolution to optimize a variable helix/pitch tool geom-
etry for regenerative chatter mitigation. Their results were
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also validated experimentally, confirming the predicted sig-
nificant improvements in chatter stability. This problem of
optimal selection of parameters for subtractive manufactur-
ing was also reported in [8,9,21]. Liao et al. [13] developed
an optimization technique for periodic solutions of delay dif-
ferential equations using the harmonic balance method and
continuation techniques. They posed an amplitude optimiza-
tion problem subject to the algebraic constraints obtained by
substitution of a truncated Fourier representation in the gov-
erning equation along with the stability conditions. The sen-
sitivity expressions were analytically derived, and the opti-
mization problem was then solved for the unknown Fourier
coefficients and the unknown parameters. The delayed Duff-
ing oscillator was used to validate the methodology.

The calculus of variations serves as a useful tool for con-
strained optimization problems. Here, a Lagrangian func-
tional is constructed by combining the objective function
with the imposed constraints using Lagrange multipliers (ad-
joint variables) as coefficients. The vanishing of the vari-
ations of the Lagrangian with respect to the design vari-
ables and the Lagrange multipliers then yields the neces-
sary optimality conditions for a stationary point. In general,
these equations cannot be solved directly. Instead, nonlin-
ear solvers may be applied to various finite-dimensional dis-
cretizations. A major challenge with this approach is the se-
lection of a good initial guess which converges to the desired
solution. A resolution built on principles of parameter con-
tinuation was originally proposed in the work of Kernévez
and Doedel [11]. There, a sequence of properly initialized
stages of continuation along one-dimensional manifolds of
solutions to a subset of the necessary optimality conditions
was used to connect the local extremum to an initial solution
guess with vanishing Lagrange multipliers. This method-
ology was recently revisited by Li and Dankowicz [12]
and there cast in terms of partial Lagrangians relevant to
the general context of constrained optimization of integro-
differential boundary-value problems without delay. Impor-
tantly, this work showed how the Lagrangian structure was
consistent with a staged construction paradigm implemented
in the software package COCO.

In this work, we generalize the successive continuation
approach of Kernévez and Doedel to optimization along
families of periodic and quasiperiodic orbits in dynamical
systems with delay. We derive the necessary optimality con-
ditions from a suitably constructed Lagrangian without first
discretizing the governing equations and unknowns. This ap-
proach is in contrast to other studies [16], in which the dis-

cretization of the governing equations is first carried out and
then the Lagrangian is constructed based on the discretized
equations. In our formulation, the Lagrange multipliers sat-
isfy coupled, piecewise-defined, boundary-value problems
with both delayed and advanced arguments. Depending on
the imposed constraints, the Lagrange multipliers may be
discontinuous or nonsmooth at the interval boundary points,
naturally resulting in a multi-segment problem [1].

We first motivate our interest and approach with the
problem of optimization of the response amplitude of a
harmonically-forced, scalar, linear, delay-differential equa-
tion in Sect. 2. The general framework for problems with
single delays is then considered in Sect. 3, first for peri-
odic orbits and subsequently for families of two-dimensional
quasiperiodic invariant tori. As discussed in detail, the latter
optimization problem falls into the category of constrained
optimization for partial differential equations (PDEs) [5,6,
14], for which the necessary optimality conditions take the
form of coupled, piecewise-defined PDEs with non-local
coupling, as well as associated boundary and interval con-
ditions representing periodicity in one dimension and rota-
tion in the other. Subsections of Sect. 3 consider example
applications to the search for a saddle of the response ampli-
tude of a harmonically-forced Duffing oscillator subject to
delayed feedback control and a geometric fold along a fam-
ily of quasiperiodic trajectories for constant rotation number.
Analysis using the COCO software package validates the suc-
cessive continuation approach, as well as the simultaneous
discretization of the dynamic constraints and adjoint equa-
tions. A number of additional considerations and opportuni-
ties for future work are considered in the concluding section.

2 Motivating Example

We illustrate the general framework for optimization along
families of solutions to delay-differential equations (DDEs)
by first considering periodic responses z(t) of frequency ω

for a harmonically-forced, scalar, linear, delay-differential
equation

ż =−z− z(t−1)+ cosωt, (1)

where we omit (here, and throughout the paper) functional
arguments when they are obvious from the context. It fol-
lows from the method of undetermined coefficients that such
responses are of the harmonic form

z(t) = r(ω)cos(ωt−θ(ω)), (2)
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where

r(ω) =
[
2+ω

2−2ω sinω +2cosω
]−1/2

(3)

and

cosθ(ω) =−1+ cosω

r3(ω)
, sinθ(ω) =

sinω−ω

r3(ω)
. (4)

Let us consider the optimization problem of finding the forc-
ing frequency ω for which such a periodic response has
maximum amplitude. It follows from (3) that the maxi-
mum amplitude rcrit

.
= r(ωcrit)≈ 0.89 is achieved for ωcrit ≈

1.72 (cf. Fig. 1), and that z(tcrit) = rcrit at time tcrit
.
=

θ(ωcrit)/ωcrit ≈ 2.24 (up to multiples of the period Tcrit
.
=

2π/ωcrit ≈ 3.65). Hence, for this simple optimization prob-
lem all components of the solution are known exactly, en-
abling a comparison with the results of numerical algo-
rithms.
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Fig. 1: Frequency-response diagram for the steady-state pe-
riodic solutions of the harmonically-forced, scalar, linear
delay-differential equation (1). The maximum value of the
amplitude is rcrit ≈ 0.8911 which occurs for ω = ωcrit ≈
1.7207 (T = Tcrit ≈ 3.6516).

2.1 Formulation as a constrained optimization problem

We transform the above optimization problem into a format
suitable for a general numerical solver by introducing the
excitation period T = 2π/ω as an unknown (T replaces ω)
and rescaling time (calling the new time τ) such that x(τ) .

=

z(T τ + T φ/2π). Here, the free phase φ is to be chosen so

as to shift the time on the interval [0,1] when the periodic
solution x has a critical point to τ = 0. Thus, we are seeking
a solution to the constrained optimization problem

maximize µA = x(0) (5)

with respect to a continuous function x on [0,1], as well as
the variables T and φ , subject to the equality constraints

x′ =−T x−T x(τ +1−1/T )+T cos(2πτ +φ) (6)

for τ ∈ (0,1/T ),

x′ =−T x−T x(τ−1/T )+T cos(2πτ +φ) (7)

for τ ∈ (1/T,1),

0 = x(0)− x(1) , (8)

0 = x(0)+ x(1−1/T )− cosφ . (9)

Here, the constraints (6) and (7) impose the original delay-
differential equation on the interval (0,1). They rely on peri-
odicity to wrap the delayed argument back into this interval
assuming that T > 1. The constraints (8) and (9) are bound-
ary conditions. Constraint (8) imposes periodicity also on the
interval boundary, while (9) is a phase condition that ensures
that x′(0) = 0, consistent with x having a critical point at τ =

0 and justifying the maximization of x(0) as a substitute for
the amplitude. By continuity of x on [0,1] and (8) it follows
that x is, in fact, a smooth function on [0,1]. Indeed, from
the explicit solution in the previous section, it follows that
x(τ) = r(2π/T )cos2πτ and φ = θ(2π/T ) and, in particular,
that optimality is obtained for x(τ) = xcrit(τ)

.
= rcrit cos2πτ

and φ = φcrit
.
= θ(2π/Tcrit) for T = Tcrit.
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The constrained optimization problem (5)–(9) gives rise
to the Lagrangian

L(x(·),φ ,T,µA,λ1(·),λ2,λ3,ηA) = µA +ηA (x(0)−µA)

+

1/T∫
0

λ1
[
x′+T [x+ x(τ +1−1/T )− cos(2πτ +φ)]

]
dτ

+

1−2/T∫
1/T

λ1
[
x′+T [x+ x(τ−1/T )− cos(2πτ +φ)]

]
dτ

+

1−1/T∫
1−2/T

λ1
[
x′+T [x+ x(τ−1/T )− cos(2πτ +φ)]

]
dτ

+

1∫
1−1/T

λ1
[
x′+T [x+ x(τ−1/T )− cos(2πτ +φ)]

]
dτ

+λ2 (x(0)− x(1))+λ3 (x(0)+ x(1−1/T )− cos(φ)) ,
(10)

where the Lagrange multipliers are λ1(τ) (a function on
[0,1]) for the DDE constraints (6) and (7), λ2 and λ3 for the
boundary conditions (8) and (9), and ηA for the relationship
between the fitness µA and x(0) in (5).

In (10), the integral for the pairing between λ1 and the
DDE constraints has been split into 4 parts, one for each of
the intervals (0,1/T ), (1/T,1− 2/T ), (1− 2/T,1− 1/T ),
and (1− 1/T,1), reflecting different functional forms of
the differential equations (6) and (7) for x on (0,1/T ) and
(1/T,1), respectively, and anticipating possible discontinu-
ities in λ1 and λ ′1. For example, the split at τ = 1− 1/T is
in anticipation of a potential discontinuity of the Lagrange
multiplier λ1 at this instant caused by the imposition of a
constraint on x evaluated at this time in (9). This discontinu-
ity implies a potential discontinuity of λ ′1 at τ = 1−2/T . For
the same reason, the appearances of x(0) in (5) and (9) sug-
gest that λ1(0) 6= λ1(1) resulting in a potential discontinuity
of λ ′1 at τ = 1−1/T . All functions are assumed to be contin-
uously differentiable on the partition implied by the integrals
in (10). The ordering of the discontinuity points assumes that
T > 3 (Fig. 1 shows that the optimal T is in this range).

Imposing vanishing variations of the Lagrangian L with
respect to variations in all its arguments recovers the original
constraints (5)–(9) and the following adjoint system deter-
mining the Lagrange multipliers. Specfically, vanishing vari-
ations with respect to x imply

−λ
′
1 +T λ1 +T λ1 (τ +1/T ) = 0 (11)

for τ ∈ (0,1/T )∪ (1/T,1−2/T )∪ (1−2/T,1−1/T ) and

−λ
′
1 +T λ1 +T λ1 (τ−1+1/T ) = 0 (12)

for τ ∈ (1−1/T,1). Boundary and interface conditions for
these equations are obtained by considering variations with
respect to x(0), x(1/T ), x(1− 2/T ), x(1− 1/T ), and x(1),
corresponding in that order to

0 =−λ1(0)+λ2 +λ3 +ηA, (13)

0 = λ1(1/T )−−λ1(1/T )+, (14)

0 = λ1(1−2/T )−−λ1(1−2/T )+, (15)

0 = λ1(1−1/T )−−λ1(1−1/T )++λ3, (16)

0 = λ1(1)−λ2, (17)

using the convention that λ1(τ
∗)±

.
= limτ→τ∗±λ1(τ) and re-

calling that x(τ) is continuous on [0,1]. Vanishing variations
with respect to φ and T imply the integral constraints

0 =

1∫
0

T λ1 sin(2πτ +φ) dτ +λ3 sin(φ) (18)

and

0 =

1/T∫
0

λ1
(
x(τ +1−1/T )+ x′(τ +1−1/T )/T

)
dτ

+

1∫
1/T

λ1
(
x(τ−1/T )+ x′(τ−1/T )/T

)
dτ

+

1∫
0

λ1 (x− cos(2πτ +φ)) dτ +λ3T−2x′(1−1/T ), (19)

respectively. Finally, vanishing variation with respect to µA
implies that

1−ηA = 0. (20)

In summary, the system of original contraints (5)–(9) and ad-
joint equations (11)–(20) is a nonlinear integro-differential
boundary-value problem (BVP) defining the critical points
of the Lagrangian L and the constrained optimization prob-
lem (5)–(9).

In this example, the dimension of the manifold on which
the constrained optimization problem is posed equals 1, cor-
responding to the numbers of degrees of freedom of the non-
linear subsystem (5)–(9) (with variables x, T and φ ). In con-
trast, the full system (5)–(9), (11)–(20) has no such degrees
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of freedom and, consequently, generically has only isolated
solutions. Several properties put it beyond the reach of “off-
the-shelf” BVP solvers:

1. It consists of differential equations on multiple inter-
vals (thus, the problem is called a multi-segment BVP)
with differential functional forms and continuous “right-
hand sides”. The number and length of these intervals is
strongly problem dependent, and may even change dur-
ing the optimization process.

2. The differential equations evaluate their right-hand sides
at times deviating from τ (delayed or advanced argu-
ments).

3. The second point leads to nonlocal coupling across seg-
ments that is not restricted to coupling at the boundaries
of the intervals. For example, (11) couples the values of
λ1 in (1−2/T,1−1/T ) to values of λ1 in (1−1/T,1).

On the other hand, the system (5)–(9), (11)–(20) has
some additional structure that aids both in its construction
and solution:

1. The equations are only forward coupled in that a solu-
tion to the original constraints (5)–(9) can be obtained
independently of the values of the Lagrange multipliers,
while a solution to the adjoint equations (11)–(20) re-
quires knowledge of x, T , and φ , and generically exists,
at best, only for isolated choices of x, T , and φ .

2. The adjoint equations (11)–(19) (thus excluding (20)) are
linear and homogeneous in the Lagrange multipliers λ j
( j = 1,2,3) and ηA. A trivial solution of this subset of the
adjoint system is therefore given by vanishing Lagrange
multipliers for any x, T , and φ .

3. The adjoint equation (20) is trivial both in construction
and solution. Imposing its solution (ηA = 1) on the re-
maining adjoint system, however, renders the latter non-
homogeneous.

This structure will also be present for more general cases
than the example and can be exploited in the search for solu-
tions, as well as to generate the adjoint equations (11)–(19)
automatically during a staged construction of the optimiza-
tion problem similar to [12].

In this example, a few facts about the Lagrange multi-
pliers may be deduced directly from the adjoint equations.
It follows immediately from (14) and (15) that λ1 is contin-
uous at τ = 1/T and τ = 1− 2/T , and from (11) that λ ′1 is
continuous at τ = 1/T . Moreover, using the explicitly known
solution for x, it follows that the Lagrange multiplier λ3 must

equal 0 at a local extremum. Indeed, substitution of the mod-
ified phase condition

δ = x(0)+ x(1−1/T )− cosφ (21)

in lieu of (9) implies that

µA = (cosφ + cos(ω +φ)+ω sinφ)/r(ω), (22)

where φ is implicitly determined by

δ = ω (sinφ + sin(ω +φ)−ω cosφ)/r(ω) (23)

for δ ≈ 0. Implicit differentiation of both conditions with
respect to the residual δ shows that the rate of change of µA
with respect to δ equals 0 at δ = 0. This, in turn, implies that
that λ3 = 0 at an extremum, i.e., that λ1 is, in fact, continu-
ous also at τ = 1−1/T and, consequently, continuously dif-
ferentiable also at τ = 1−2/T . In contrast, λ ′1 experiences a
discontinuity at τ = 1−1/T for nonzero ηA = λ1(0)−λ1(1).

2.2 Simple continuation

According to the properties enumerated above, a solution to
(5)–(9), (11)–(20) may be sought using a method of succes-
sive continuation [11,12] with an embedded multi-segment
boundary-value problem implementation that permits evalu-
ation of the right-hand side at arguments shifted by arbitrary
times. Specifically, this method overcomes the problem of
initializing a nonlinear solver for the full system by defining
a sequence of continuation problems with one-dimensional
solution manifolds that connect an initial solution guess with
Lagrange multipliers all equal to 0 with the sought critical
point for which ηA must equal 1.

To this end, we consider the system given by the relation-
ship between µA and x(0) in (5), the boundary-value prob-
lem constraints (6)–(9), and the adjoint integral-differential
boundary-value problem (11)–(19), but purposely omit the
algebraic constraint (20). Although we anticipate that λ3 will
equal 0 throughout the analysis, we keep λ3 as an unknown
and monitor its value during continuation. By linearity and
homogeneity of the adjoint subsystem in the Lagrange mul-
tipliers λ j and ηA, it follows that solutions to the full system
lie on either of two one-dimensional manifolds. The first of
these consists of functions x(τ) = r(2π/T )cos2πτ with cor-
responding T , φ , and µA = x(0) = r(2π/T ), and with van-
ishing Lagrange multipliers. The second manifold consists
of the periodic solution xcrit(τ) = rcrit cos2πτ with corre-
sponding T = Tcrit, φ = φcrit, and µA = rcrit, and with varying
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Lagrange multipliers proportional to ηA. The two manifolds
clearly intersect at the local extremum of µA along the first
manifold. The sought solution to the complete set of equa-
tions (5)–(9), (11)–(20) corresponds to the point along the
second manifold where ηA = 1.

In this example, the solutions along the first manifold are
known explicitly. In other cases, an initial periodic response
may be approximately obtained from the dynamically sta-
ble solution by direct simulation. Given such an initial so-
lution guess for x, T , and φ , a nonlinear solver may be em-
ployed to converge to a point on the manifold. A numerical
continuation algorithm (e.g., pseudo-arclength continuation)
may then be used to generate a sequence of points along
the manifold, meanwhile monitoring for local extrema of
µA and singular points for the system Jacobian (correspond-
ing to branch points on the manifold). As shown above, and
true also in the general case, these coincide. Using standard
techniques, numerical continuation may proceed from such
a branch point along the secondary manifold with the help of
a candidate direction of continuation, for example, one that
is i) transversal to the tangent direction to the original so-
lution manifold and ii) in the plane spanned by the tangent
directions to the two manifolds at the branch point.

Continuation using such an implementation in the COCO

software package [18] approximately locates an extremum
(in the form of a fold point in µA along the solution man-
ifold) at T ≈ 3.6515 as shown in Fig. 2. Branch switch-
ing from the nearby branch point (exact coincidence is lost
due to discretization) and continuation until ηA = 1 yields
the graphs of x(τ) and λ1(τ) shown in Fig. 3. As seen
in the bottom panel, λ1(τ) is approximately continuous at
1− 1/T ≈ 0.73, albeit with discontinuous derivative at this
point, since λ1(0)−λ1(1) = 1.

3 General Optimization Framework

In this section, we discuss the general methodology for opti-
mization on periodic and quasiperiodic solutions z(t)∈Rn of
delay-differential equations with a single delay of the form

ż = f (t,z,z(t−α) , p) , (24)

where f : R1 ×Rn ×Rn ×Rq → Rn is periodic in its first
argument with period T . Here, α and p denote the time delay
and the problem parameters (excluding T ), respectively.

As the motivating example in the previous section illus-
trates, the problem Lagrangian and, by implication, the ad-
joint equations are linear in the Lagrange multipliers. The
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BP

Fig. 2: Results from numerical continuation with vanishing
Lagrange multipliers. The maximum value of µA is located
at T ≈ 3.6515 and is here identified by the label BP, since it
approximately coincides with a branch point.

adjoint equations may therefore be constructed term-by-term
by successively deriving the contributions from disjoint col-
lections of constraints from the corresponding partial La-
grangians associated with a subset of the Lagrange mul-
tipliers. Until the full set of constraints has been consid-
ered, the adjoint equations are not completely known. The
following subsections discuss the partial Lagrangians and
the implied contributions to the adjoint equations resulting
from the DDE constraints and boundary conditions associ-
ated with periodic and quasiperiodic orbits. For particular
examples, we indicate the additional contributions associ-
ated with problem-specific constraints that complete the con-
struction of the adjoint equations. In all cases, the contribu-
tion from the objective function to the Lagrangian implies
the algebraic adjoint condition that the corresponding La-
grange multiplier (ηA in the previous section) must equal 1
at a stationary point.

3.1 Periodic orbits

Suppose first that T > α and consider the problem of op-
timizing a scalar-valued objective functional on a family of
continuous solutions x(τ) to the differential equations

x′ = T f (T τ,x,x(τ +1−α/T ) , p) for τ ∈ (0,α/T ), (25)

x′ = T f (T τ,x,x(τ−α/T ) , p) for τ ∈ (α/T,1), (26)

and the boundary conditions

x(0)− x(1) = 0. (27)
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Fig. 3: (a) x(τ) and (b) λ1(τ) at the terminal point of the
second stage of continuation with ηA = 1. The upper panel
shows a comparison between the numerical solution and the
analytical solution at the extremum. The bottom panel shows
the Lagrange multiplier associated with the imposition of the
DDE admitting a slope discontinuity at τ = 1−1/T .

By a rescaling of the independent variable by T , such solu-
tions correspond to periodic solutions of (24) with period T .
By continuity and periodicity, such solutions must be con-
tinuously differentiable to all orders.

Suppose, in fact, that T > 3α and that the objective func-
tional and any additional constraints depend on pointwise
values of x(τ) only at τ = 0, τ = 1, and τ = β for some
β = β (α,T ) such that

2α/T < β < 1−α/T. (28)

As we show below, such dependence results in an additional
adjoint equation associated with variations with respect to

x(β ). Other pointwise dependencies of the objective func-
tional would be treated similarly, while dependence on an
integral over the entire interval [0,1] of a function of x would
not result in additional adjoint equations. We may formulate
a corresponding partial Lagrangian

LBVP
(
x(·),α,T, p,λ f (·),λbc

)
=

λ
T
bc (x(0)− x(1))+

α/T∫
0

λ
T
f
(
x′−T f1

)
dτ

+

β−α/T∫
α/T

λ
T
f
(
x′−T f0

)
dτ +

β∫
β−α/T

λ
T
f
(
x′−T f0

)
dτ

+

1−α/T∫
β

λ
T
f
(
x′−T f0

)
dτ +

1∫
1−α/T

λ
T
f
(
x′−T f0

)
dτ, (29)

where f j(τ) = f (T τ,x(τ) ,x(τ + j−α/T ) , p). Here, λ f (τ)

and λbc are the Lagrange multipliers associated with the im-
position of the differential equations and boundary condi-
tions, respectively, and each integrand is assumed to be con-
tinuously differentiable on the corresponding interval. The
splitting of the integral is here motivated by an anticipated
discontinuity of λ f at τ = β and, consequently, of λ ′f at
τ = β −α/T , the different functional forms of the original
DDEs on the intervals (0,α/T ) and (α/T,1), and an antici-
pated discontinuity in λ ′f also at τ = 1−α/T .

By the stated assumptions on the objective function and
any additional constraints, it is easy to show that, at a station-
ary point of the total Lagrangian, λ f (τ) must be continuous
at τ = α/T , τ = β −α/T , and τ = 1−α/T . Using the no-
tation

f j,k(τ) = ∂k f (T τ,x(τ),x(τ + j−α/T ), p), (30)

f j,q(τ) =
d

dq
f (T τ,x(τ) ,x(τ + j−α/T ) , p) (31)

for j = 0,1 and q = α,T (∂k f is the partial derivative of f
with respect to its kth argument, d/dq is the total derivative
of an expression with respect to q), the contributions to the
necessary adjoint conditions for a stationary point of the total
Lagrangian are given by

−λ
′T
f −T λ

T
f f1,2−T λ

T
f (τ +α/T ) f0,3 (τ +α/T ) (32)

for variations with respect to x(τ) on τ ∈ (0,α/T );

−λ
′T
f −T λ

T
f f0,2−T λ

T
f (τ +α/T ) f0,3 (τ +α/T ) (33)
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for variations with respect to x(τ) on τ ∈ (α/T,β −α/T )∪
(β −α/T,β )∪ (β ,1−α/T );

−λ
′T
f −T λ

T
f f0,2−T λ

T
f (τ +α/T −1) f1,3 (τ +α/T −1)

(34)

for variations with respect to x(τ) on τ ∈ (1−α/T,1);

−λ
T
f (0)+λ

T
bc, λ

T
f (β )−−λ

T
f (β )+, λ

T
f (1)−λ

T
bc, (35)

for variations with respect to x(0), x(β ), and x(1), respec-
tively;

−
∫

α/T

0
λ

T
f T f1,α dτ−

∫ 1

α/T
λ

T
f T f0,α dτ (36)

for variations with respect to α;

−
∫

α/T

0
λ

T
f ( f1 +T f1,T ) dτ−

∫ 1

α/T
λ

T
f ( f0 +T f0,T ) dτ (37)

for variations with respect to T ; and

−
∫

α/T

0
λ

T
1 T f1,4 dτ−

∫ 1

α/T
λ

T
1 T f0,4 dτ (38)

for variations with respect to p. The terms f j,T and f j,α in
(36) and (37) both contain time derivatives x′ with delayed
or advanced arguments, since T and α both appear in the
evaluation of x in the third arguments of f0 and f1.

As previously anticipated, the explicit dependence of the
Lagrangian on the internal state point x(β ) results in a poten-
tial discontinuity of the Lagrange multiplier λ f (τ) at τ = β .
Continuous differentiability of x(τ) on [0,1] and of λ f (τ) on
(0,β −α/T ), (β −α/T,β ), (β ,1−α/T ), and (1−α/T,1)
implies that the necessary conditions for an extremum are
in the form of a multi-segment boundary-value problem in
a single trajectory segment for x(τ) and four coupled tra-
jectory segments for λ f (τ). A similar result is obtained, for
example, in the limiting case when β = 1−α/T . This case
specializes to the example discussed in the previous section,
since there α = 1, β = 1−1/T , and T > 3. In contrast, when
β is either 0 or 1, i.e., when there is no dependence of the ob-
jective function or any additional constraints on an internal
point, then we obtain a single trajectory segment for x(τ)
and three coupled trajectory segments for λ f (τ) with both
variables continuous throughout the interval [0,1].

3.2 A Duffing oscillator with delayed PD control

As an application of the general methodology when β = 0,
consider the harmonically-forced Duffing oscillator with de-
layed state (proportional and derivative; PD) feedback given
by the DDE

z̈+2ζ ż+ z+µz3 = 2az(t−α)

+2bż(t−α)+ γ cos(2πt/T ) . (39)

Inspired by [7], for fixed ζ , µ , a, b, and γ , we seek a de-
lay α that minimizes the maximum amplitude of oscillation
along a family of periodic responses of this system under
variations in the excitation period T . Since the optimization
problem involves minimizing a maximum, it corresponds to
the search for a saddle point in the value of the oscillation
amplitude on the two-dimensional constraint manifold.

Following Section 2.1, let x1(τ)
.
= z(T τ +T φ/2π) and

x2(τ)
.
= ż(T τ +T φ/2π) represent the displacement and ve-

locity, respectively, on the rescaled time interval [0,1]. The
phase φ is again to be chosen so as to shift the time on this in-
terval when the oscillator reaches its maximum displacement
to τ = 0. It follows that the objective functional is given by

µA = x1(0) (40)

for solutions of (25)–(27) subject to the phase condition

x2(0) = 0 (41)

and corresponding to the vector field

f (t,u,v, p) =
(

u2
−2ζ u2−u1−µu3

1

)
+

(
0

2av1 +2bv2 + γ cos(2πt/T +φ)

)
, (42)

where p = φ .
The partial Lagrangian for the objective functional and

phase condition is

Lopt
(
x(·),µA,λph,ηA

)
= µA +λphx2(0)+ηA(x1(0)−µA),

(43)

where λph and ηA are additional Lagrange multipliers. This
partial Lagrangian adds the term (ηA,λph)

T to the variation
with respect to x(0) in (35) (first term) and results in the
algebraic adjoint constraint

0 = 1−ηA, (44)
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assuming no additional dependence of the problem La-
grangian on µA.

Since neither the objective functional nor the additional
phase condition depend on x evaluated at an interior point of
the interval [0,1], it follows that λ f is continuous on the en-
tire interval. This simplifies the partial Lagrangian LBVP in
(29) as the two integrals with boundary β can be combined,
and the resulting adjoint DDE contribution (33) can be ap-
plied on the combined interval (α/T,1− α/T ), such that
λ f (τ) is in fact continuously differentiable on (0,1−α/T ).
Correspondingly, the middle adjoint condition in (35) can be
omitted. Moreover, like in the motivating example in Sec-
tion 2.1, it is easy to see that the rate of change of µA = x1(0)
with respect to δ = x2(0) vanishes at δ = 0. We conclude
that λph = 0 at a stationary point of the Lagrangian. This im-
plies that λ f ,2(1) = λ f ,2(0) and, by inspection of (33) and
(34), that both components of λ f are actually continuously
differentiable throughout the interval [0,1].

Since the dimension nopt of the optimization manifold
equals 2, the successive continuation approach proposed by
Kernévez and Doedel [11] requires multiple stages (in con-
trast to the motivating example in Section 2.1, where nopt =

1): one initially optimizes only with respect to one vari-
able, following a curve in the optimization manifold, keeping
nopt− 1 variables fixed. At each successive stage of contin-
uation one releases one further optimization variable, until
all variables are free. In this analysis, we propose to keep α

fixed during the initial stage of continuation, corresponding
to the imposition of a constraint on the set of unknowns. To
this end, we consider the additional partial Lagrangian

Lsc(α,µα ,ηα) = ηα(α−µα). (45)

This partial Lagrangian adds the constraint

α = µα (46)

and the algebraic adjoint equation (for vanishing variation
with respect to µα )

0 = ηα , (47)

and adds ηα to the adjoint variations with respect to α in
(36). The total problem Lagrangian is now given by

L
(
x(·),α,T, p,µA,µα ,λ f (·),λbc,λph,ηA,ηα

)
=

LBVP
(
x(·),α,T, p,λ f (·),λbc

)
+Lopt

(
x(·),µA,λph,ηA

)
+Lsc(α,µα ,ηα). (48)

The necessary conditions for an extremum of the total La-
grangian are then given by (i) the original differential equa-
tions and boundary conditions, (25)–(27), (40), (41), and
(46), and (ii) the various adjoint equations, including (44)
and (47), assembled in stages as constraints and variables are
added, setting the sums of all resulting contributions equal
to 0. Although we anticipate that λph will equal 0 through-
out the analysis, we keep λph as an unknown and monitor its
value during continuation.

As in the previous section, we may locate an extremum
of L by several successive stages of continuation, in each
stage omitting one or both of the adjoint conditions (44) and
(47). In particular, by holding µα fixed and letting ηA vary
freely, we may arrive at a solution with ηA = 1 in two stages
of continuation: first, by continuing along a one-dimensional
manifold with vanishing Lagrange multipliers, and next by
branch-switching at a local extremum of µA to a secondary
branch along which only the Lagrange multipliers vary and,
in fact, do so proportionally to ηA. A final stage of continu-
ation then proceeds from the point on this second manifold
where ηA = 1, but this time with ηA fixed at 1 and µα free to
vary. A sought extremum is obtained when ηα = 0.

An example of such an analysis for the case when ζ =

0.05, µ = 0.05, a = 0.05, b = −0.05, and γ = 0.5 is shown
in Fig. 4 (projected into the (α,2π/T,µA) space). Here,
the full integro-differential boundary-value problem is dis-
cretized and analyzed using the COCO [18] package follow-
ing the methodology discussed in [2] in terms of continuous,
piecewise-polynomial approximants on a uniform partition
of every solution segment into N = 10 mesh intervals, re-
sulting in a large system of nonlinear algebraic equations.
The successive continuation approach then proceeds along
the following stages:

– Initial guess. An initial solution guess for x(τ) near the
first manifold is first constructed using direct simulation
with α = 0.1 and T = 2π , after which φ is adjusted such
that the maximum of x1 occurs at τ ≈ 0. We finally let
µA = x1(0) and µα = α .

– Stage 1: Continuation along manifold with vanishing La-
grange multipliers. The delay α is held constant by fix-
ing µα at its initial value. Continuation proceeds along
the blue curve in Fig. 4, monitoring for branch points
(coincident with extrema in µA up to discretization er-
rors).

– Stage 2: Continuation along manifold with varying La-
grange multipliers. Branch off at the discovered branch
point (labeled BP in Fig. 4) with µα still fixed, stopping
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when ηA reaches 1. During this continuation all primary
variables x(·), φ , T , α stay constant. Only Lagrange mul-
tipliers change their values. This continuation does not
change any coordinates in Fig. 4 (we remain at the point
BP).

– Stage 3: Continuation with varying µα . Fix ηA at 1 and
allow µα (and, consequently, α) to vary. Continue while
monitoring ηα for zero crossings (red curve in Fig. 4).
The point where ηα = 0 along the red curve is labelled
“Local Optimum”. At this point all necessary conditions
for a stationary point of L are satisfied, including ηA = 1
and ηα = 0.

0
0.5

0.5

1

11

1.5

0.8

2

0.6

2.5

1.5 0.4
0.2

2 0

BP

Local Optimum

Fig. 4: Optimization of the displacement amplitude along pe-
riodic orbits of the harmonically-excited Duffing oscillator
with ζ = 0.05, µ = 0.05, a = 0.05, b = −0.05, and γ = 0.5
under variations in α and T . Three successive stages of con-
tinuation connect the sought saddle point with an initial so-
lution guess with vanishing Lagrange multipliers. Stages 1
(blue) and 3 (red) described in the text are visible in the
(α,2π/T,µA) space. In Stage 1, a peak in the displace-
ment amplitude is approximately detected in close proximity
to a branch point for the corresponding continuation prob-
lem. The second stage involves branch switching to a branch
along which only the Lagrange multipliers vary (not visi-
ble). The red curve shows the final stage of continuation with
fixed ηA = 1. The optimal delay and corresponding period
obtained at the terminal point with ηα = 0 equal 0.7824 and
5.88, respectively. At this point µA = 1.9852.

The end point of stage 3 corresponds to a critical point
at α ≈ 0.7824, φ ≈ 1.488, and T ≈ 5.88 (which Fig. 4 con-
firms to be a saddle point). We may compare the resulting

optimal delay with the prediction from a first-order multiple-
scales perturbation analysis for the weakly nonlinear (small
µ), weakly damped (small ζ ), and weakly forced (small γ)
case, which predicts a maximal (with respect to T ) response
amplitude

γ

2|ζ +asinα−bcosα|
, (49)

(independent of µ , see the appendix for intermediate steps
and [7,17]). The computed optimal delay α ≈ 0.7824 is
in close agreement with the predicted optimal delay π/4 ≈
0.7854 obtained from (49) for the case that b=−a. The opti-
mal displacement profile x1(τ) and the components of λ f (τ)

are shown in Fig. 5. The top panel shows close agreement
between the results obtained using continuation and the har-
monic response obtained from the perturbation analysis, at
the computed optimal values of α , T , and φ . Panel (b) of
Fig. 5 shows the functional Lagrange multipliers λ f , con-
firming that they are approximately smooth in this exam-
ple (since the objective does not depend on β ∈ (0,1)) but
with λ f ,1(1) 6= λ f ,1(0) and λ f ,2(1) ≈ λ f ,2(0) (since the ob-
jective functional and the phase constraint depend on x(0)
and λph ≈ 0).

Further comparisons between the results obtained using
the successive continuation approach and those predicted by
the perturbation analysis are shown in Figs. 6 and 7 for the
case when the oscillator is only subjected to displacement
feedback, i.e., when b = 0, with weak (µ = 0.05) and strong
(µ = 1) nonlinearity, respectively. In each case, the pertur-
bation analysis predicts a saddle in the response amplitude
for α = π/2 ≈ 1.5708, while the computational results are
α ≈ 1.4712 and 0.8712, respectively. For the case of weak
nonlinearity depicted in Fig. 6, there is still close agreement
between the optimal time histories for x1(τ), while this is
no longer true for the case of strong nonlinearity shown in
Fig. 7. The frequency-response curves shown in the lower
panels of Figs. 6 and 7 were obtained using numerical con-
tinuation for the computed and predicted critical values of
α . In the case of the weak nonlinearity, we note a weak de-
pendence on the location and magnitude of the peak on the
value of the delay, while the differences are stark in the case
of the strong nonlinearity. In the latter case, the optimal de-
lay predicted by the perturbation analysis produces a peak
amplitude more than 50% larger than that obtained using the
numerical method.
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Fig. 5: (a) x1(τ) and (b) λ f ,1(τ) and λ f ,2(τ) at the terminal
point of the third stage of continuation illustrated in Fig. 4.
The upper panel shows a comparison between the numer-
ical solutions obtained using continuation at the computed
optimal value of α , with a first-order multiple-scales pertur-
bation analysis at the predicted optimal value of α .

3.3 Quasiperiodic Orbits

We proceed to consider the problem of optimizing a scalar-
valued objective functional on a family of quasiperiodic so-
lutions of (24), for which there exists an irrational rotation
number ρ and a smooth function Z : S× S→ Rn (here, S
denotes the unit circle) such that

z(t) = Z (θ1(t),θ2(t)) , θ̇1 = ρΩ , and θ̇2 = Ω
.
= 2π/T (50)

in terms of the period T of the vector field f in its first argu-
ment. Let subscripts θ1 and θ2 denote partial derivatives with

0 0.2 0.4 0.6 0.8 1

-3

-2

-1

0

1

2

3

Continuation

Perturbation

(a)

0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

 = 1.4712

 = /2

(b)

Fig. 6: Optimization of the displacement amplitude along pe-
riodic orbits of the harmonically-excited, weakly-nonlinear
Duffing oscillator with ζ = 0.05, µ = 0.05, a = 0.05, b = 0,
and γ = 0.5 under variations in α and T . (a) Comparison
of the displacement profile obtained from continuation at
the computed optimal delay α ≈ 1.4712 and period T ≈
5.7151 with the results predicted by perturbation analysis.
(b) Frequency-response diagrams for the computed and pre-
dicted critical delay values 1.4712 and π/2, respectively.

respect to the corresponding arguments. Substitution into the
governing equation then yields the partial differential equa-
tion (PDE)

ρΩZθ1 +ΩZθ2 = f (t,Z,Z (θ1−ρΩα,θ2−Ωα) , p) (51)

on the two-dimensional torus S×S.
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Fig. 7: Optimization of the displacement amplitude along pe-
riodic orbits of the harmonically-excited, strongly nonlinear
Duffing oscillator with ζ = 0.05, µ = 1, a = 0.05, b = 0, and
γ = 0.5 under variations in α and T . (a) Comparison of the
displacement profile obtained from continuation at the com-
puted optimal delay α ≈ 0.8712 and period T ≈ 3.4192 with
the results predicted by perturbation analysis. (b) Frequency-
response diagrams for the computed and predicted critical
delay values 0.8712 and π/2, respectively.

We decompose this PDE along its characteristics. To this
end, consider the continuous function V : S× [0,1] → Rn

given by

V (ϕ,τ)
.
= Z(ϕ +2πρτ,2πτ), (52)

such that τ = t/T , θ1(0) = ϕ , and without loss of generality
θ2(0) = 0. Shifting and wrapping of arguments between and

along characteristics will occur several times below. To sim-
plify notation, suppose that T > α and introduce the wrap-
ping operation W for a function V on S× [0,1] as[
W j

a V
]
(ϕ,τ) =V (ϕ−2π jρ,τ−a+ j), j =−1,0,1 (53)

for τ−a+ j ∈ [0,1] and all ϕ ∈ S. It follows by periodicity
that

Z(ϕ +2πρ(τ−a),2π(τ−a)) =
[
W j

a V
]
(ϕ,τ) (54)

for τ−a+ j ∈ [0,1] and all ϕ ∈ S. Differentiation and use of
(51) then implies that

Vτ = T f
(

T τ,V,W 1
α/TV, p

)
, (ϕ,τ) ∈ S× (0,α/T ) , (55)

Vτ = T f
(

T τ,V,W 0
α/TV, p

)
, (ϕ,τ) ∈ S× (α/T,1) , (56)

along with the boundary conditions

V (ϕ,1)−V (ϕ +2πρ,0) = 0, ϕ ∈ S. (57)

Equations (55)–(57) are a family of coupled DDE BVPs
in time τ , parametrized by the continuous periodic angle ϕ .
A family of orbit segments S× [0,1] 3 (ϕ,τ) 7→ V (ϕ,τ) ∈
Rn solving this family of BVPs then spans the sought
quasiperiodic invariant torus. Such a family is unique only
up to a shift of its argument ϕ ∈ S. We isolate a locally
unique solution by introducing the integral phase condition∫ 2π

0
(V (ϕ,0)−V ∗(ϕ))T V ∗ϕ (ϕ)dϕ = 0 (58)

in terms of a given continuously-differentiable reference
function V ∗ : S→Rn that is either fixed throughout the anal-
ysis or updated as appropriate. For fixed values of the prob-
lem delay α , excitation period T , and problem parameters p,
the resultant integro-differential BVP (55)–(58) defining the
quasiperiodic response is over-determined (recall that the ro-
tation number ρ is fixed) such that one has to leave at least
one system parameter free to vary to obtain isolated solu-
tions. For example, for fixed α , we thus expect to obtain a
one-dimensional manifold of quasiperiodic invariant tori un-
der simultaneous variations in T and a single element of p.

We now apply the construction of the Lagrangian and
adjoint equations to this family of DDE BVPs to formulate
optimization problems with constraints of the form (55)–
(58), following the procedure from section 3.1. We assume
that neither the objective functional nor any additional con-
straints depend on V evaluated for τ on the interior of the
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interval [0,1], and that they only depend on V on the bound-
aries τ = 0 and τ = 1 through integrals over ϕ . In this case,
the Lagrange multipliers λ f for the DDE constraint (55) will
be continuous on the domain S× [0,1] (including periodic-
ity in their first argument ϕ). The partial Lagrangian for the
constraints (55)–(58) is then given by

LBVP(V (·, ·),α,T, p,λ f (·, ·),λrot(·),λph) =∫
ϕ

α/T∫
0

dτ
[
λ

T
f (Vτ −T f1)

]
+
∫
ϕ

1−α/T∫
α/T

dτ
[
λ

T
f (Vτ −T f0)

]

+
∫
ϕ

1∫
1−α/T

dτ
[
λ

T
f (Vτ −T f0)

]
+
∫
ϕ

λ
T
rot(ϕ)(V (ϕ,1)−V (ϕ +2πρ,0))

+λph

∫
ϕ

(V (ϕ,0)−V ∗(ϕ))T V ∗ϕ (ϕ), (59)

where we abbreviate
∫

ϕ
=
∫ 2π

0 dφ and, similarly to sec-

tion 3.1, let f j(ϕ,τ) = f (T τ,V,W j
α/TV, p). The vector-

valued functions λ f (ϕ,τ) and λrot(ϕ), and the scalar λph
are the Lagrange multipliers associated with the imposition
of the differential equations (55) and (56), boundary condi-
tions (57), and the integral phase condition (58), respectively.
Each integrand is assumed to be continuously differentiable
on the corresponding interval, and λ f and λrot are assumed to
be continuous and, hence, periodic in ϕ for all τ . It is again
straightforward to show that λ f must be continuous in τ on
τ = α/T and τ = 1−α/T at a stationary point of the total
Lagrangian. In this case, λ f is continuously differentiable in
τ everywhere except at τ = 1−α/T , where a slope discon-
tinuity is anticipated from the boundary conditions (57).

Analogously to Section 3.1, consider the notation

f j,k(ϕ,τ) = ∂k f (T τ,V (ϕ,τ), [W j
α/TV ](ϕ,τ), p), (60)

f j,q(ϕ,τ) =
d

dq
f
(

T τ,V (ϕ,τ), [W j
α/TV ](ϕ,τ), p

)
, (61)

for j = 0,1 and q = α,T . Then, the contributions to the nec-
essary adjoint conditions for a stationary point of the total
Lagrangian are given by

−λ
T
f ,τ −T λ

T
f f1,2−T

(
W 0
−α/T λ f

)T
W 0
−α/T f0,3 (62)

for variations with respect to V (ϕ,τ) on (ϕ,τ) ∈ S ×
(0,α/T );

−λ
T
f ,τ −T λ

T
f f0,2−T

(
W 0
−α/T λ f

)T
W 0
−α/T f0,3 (63)

for variations with respect to V (ϕ,τ) on (ϕ,τ) ∈ S ×
(α/T,1−α/T );

−λ
T
f ,τ −T λ

T
f f0,2−T

(
W−1
−α/T λ f

)T
W−1
−α/T f1,3 (64)

for variations with respect to V (ϕ,τ) on (ϕ,τ) ∈ S ×
(1−α/T,1);

λ
T
f (ϕ,0)+λ

T
rot (ϕ−2πρ)+λphV ∗>ϕ (ϕ) (65)

for variations with respect to V (ϕ,0) on ϕ ∈ S;

λ
T
f (ϕ,1)+λ

T
rot (ϕ) (66)

for variations with respect to V (ϕ,1) on ϕ ∈ S;

−
∫
ϕ

α/T∫
0

dτ
[
λ

T
f T f1,α

]
−
∫
ϕ

1∫
α/T

dτ
[
λ

T
f T f0,α

]
(67)

for variations with respect to α;

−
∫
ϕ

α/T∫
0

dτ
[
λ

T
f (T f1,T + f1)

]
−
∫
ϕ

1∫
α/T

dτ
[
λ

T
f (T f0,T + f0)

]
(68)

for variations with respect to T ; and

−
∫
ϕ

α/T∫
0

dτ
[
λ

T
f T f1,4

]
−
∫
ϕ

1∫
α/T

dτ
[
λ

T
f T f0,4

]
(69)

for variations with respect to p.

3.4 A Hopf unfolding with delay and forcing

Consider, for example, the problem of finding a local max-
imum in ω along a family of quasiperiodic invariant tori of
the vector field

f (t,u,v, p) =
(
−ωu2 + v1 (1+ r (cos2πt/T −1))
ωu1 + v2 (1+ r (cos2πt/T −1))

)
, (70)

where r =
√

u2
1 +u2

2, α = 1, and p=ω . Notably, an example
in the tutorial for the COCO trajectory segment toolbox [18]
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shows that no such local maximum exists when α = 0, since
then ωT = 2πρ . In the present case, we consider the opti-
mization problem

maximize µω = ω (71)

subject to the constraints (55)–(58) (the coupled DDEs with
boundary conditions and phase condition, depending on ϕ).
The problem Lagrangian is then given by

L(V (·, ·),T, p,µω ,λ f (·, ·),λrot(·),λph,ηω)

= µω +ηω(ω−µω)

+LBVP
(
V (·, ·),1,T, p,λ f (·, ·),λrot(·),λph

)
, (72)

where LBVP is given in (59) and ηω is the additional La-
grange multiplier. The necessary conditions for an extremum
of the total Lagrangian are then given by (i) the original dif-
ferential equations and boundary conditions (55)–(58); (ii)
the adjoint conditions (excluding (67)) obtained by append-
ing ηω to the variation with respect to p (69) and setting all
the resulting contributions equal to 0; and (iii) the condition
that ηω = 1.

As in previous examples, we immediately note that λph
must equal 0 at a stationary point of the Lagrangian, since
the objective function is clearly independent of the particular
choice of family (ϕ,τ) 7→V (ϕ,τ) selected by the phase con-
dition. The adjoint boundary conditions (65) and (66) then
imply that

λ
T
f (ϕ,1)−λ

T
f (ϕ +2πρ,0) = 0. (73)

Moreover, direct computation using (70) and the boundary
condition (57) shows that

f0,3(ϕ,1)− f1,3(ϕ +2πρ,0) = 0. (74)

It follows from (63) and (64) that

λ
T
f ,τ(ϕ,1−1/T )+−λ

T
f ,τ(ϕ,1−1/T )− = 0, (75)

i.e., that λ f is continuously differentiable in τ on the entire
interval [0,1].

We proceed to locate an extremum by applying the suc-
cessive continuation technique to the set of equations ob-
tained by omitting the trivial adjoint condition that ηω = 1.
To this end, we approximate V (ϕ,τ), λ f (ϕ,τ), and λrot(ϕ)

by truncated Fourier series in ϕ with τ-dependent Fourier
coefficient functions, as appropriate, approximated by con-
tinuous piecewise-polynomial interpolants on the interval
[0,1]. Although we anticipate that λph will equal 0 through-
out continuation, we keep λph as an unknown and monitor

its value during continuation. We first continue along a one-
dimensional manifold along which the Lagrange multipliers
always equal 0, and then branch switch at a local maximum
of µω to a secondary branch along which the family V re-
mains unchanged, while the Lagrange multipliers vary lin-
early in ηω . The solution to the necessary conditions for a
local stationary point is then obtained once ηω = 1 along the
secondary branch.

The results of such an analysis using COCO is shown in
Figs. 8 and 9 for the case that ρ ≈ 0.6618. Here, dependence
on ϕ is approximated using a Fourier series truncated at the
fifth harmonic corresponding to 11 trajectory segments on
the torus based at ϕ = (i− 1)/11, i = 1, . . . ,11. Each τ de-
pendent Fourier coefficient is discretized using polynomials
of degree 4 on a uniform mesh with 10 intervals. The one-
dimensional family of quasiperiodic orbits in Fig. 8 along
the first manifold with vanishing Lagrange multipliers indi-
cates the existence of a local maximum in µω ≈ 0.43685 for
T ≈ 5.3153. Branch switching from the nearby branch point
(as before, exact coincidence is lost due to discretization)
and continuing until ηω = 1 yields the approximate torus and
the corresponding Lagrange multipliers λ f and λrot shown in
Fig. 9.
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Fig. 8: One-dimensional manifold obtained from the first
stage of continuation along a family of approximate
quasiperiodic invariant tori with vanishing Lagrange mul-
tipliers for the case that ρ ≈ 0.6618. The local maximum
µω ≈ 0.43685 when T ≈ 5.3153 approximately coincides
with a branch point (BP). Solid and dashed lines denote dy-
namically stable and unstable tori, respectively.
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Fig. 9: Optimal quasiperiodic invariant torus (a) and cor-
responding representation of λ f (b) obtained at the termi-
nal point (ηω = 1) of the second stage of continuation with
ρ ≈ 0.6618. Panel (c) shows the components of λrot at this
point. Solid grey curves in (a) and (b) denote the discretiza-
tion of V (ϕ,τ) and λ f (ϕ,τ) using trajectory segments based
at ϕ = (i−1)/11, for i = 1, . . . ,11.

As an aside, direct numerical simulation using initial
conditions predicted by the continuation analysis suggest
that quasiperiodic tori found on the lower half of the one-
dimensional family shown in Fig. 8 are stable to sufficiently
small perturbations, while the tori found on the upper half
are unstable, with a critical loss of stability coincident with
the peak value of µω .

4 Conclusions

The various examples in previous sections illustrate the suc-
cessful application to the case with single time delays of the
general methodology to optimization along implicitly de-
fined solutions to integro-differential boundary-value prob-
lems first proposed by Kernevez and Doedel [11] for ordi-
nary differential equations. Here, the partial Lagrangian ap-
proach introduced in [12] was used to derive adjoint condi-
tions that were linear and homogeneous in the unknown La-
grange multipliers. This allowed a search for local extrema
to proceed along a connected sequence of one-dimensional
manifolds of solutions to the necessary conditions for such
extrema minus the trivial algebraic adjoint conditions on a
subset of the Lagrange multipliers: first, along a branch with
vanishing Lagrange multipliers, then switching to a branch
with linearly varying Lagrange multipliers, and then along
additional branches until all the previously omitted trivial al-
gebraic adjoint conditions were satisfied.

In contrast to the case of ordinary differential equations,
the presence of time delays introduces potential disconti-
nuities that must be accounted for in any numerical so-
lution strategy. By the properties of differential equations
with time-shifted arguments, such discontinuities propagate
across time, gaining an order of continuity for each iteration.
Here, we have only accounted for zeroth- or first-order dis-
continuities in the formulation of the governing boundary-
value problems. On each segment along which a function
was shown to be continuously differentiable, we have ap-
proximated such a function by a continuous piecewise-
polynomial function of degree 4 in each mesh interval, ignor-
ing continuity in the first derivative across mesh boundaries
or discontinuities of order two or higher within each mesh
interval. The piecewise-polynomial approximants have been
used to impose a discretization of the governing differential
equations at a set of collocation nodes within each interval
and to evaluate functions with time-shifted arguments on the
same or other intervals. Such a collocation strategy is con-
sistent with the approach in [3], and there compared to an
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alternative mesh strategy that depends on the delay. We have
not undertaken a detailed analysis of the sensitivity of the re-
sults to the numerical mesh or polynomial degree. Notably,
while we rely in this paper invariably on uniform meshes, it
is common to consider adaptive meshes for which the num-
ber of intervals and their relative size may change during
continuation. We leave such an implementation for future
work.

In all the examples, a Lagrange multiplier associated
with a phase condition was found to equal 0 on a local ex-
tremum of the corresponding Lagrangian. As stated previ-
ously, we nevertheless retained this Lagrange multiplier as
an unknown and monitored its value during continuation.
Experiments with the number of mesh intervals were used
to determine whether this value was effectively 0 also in the
computational analysis. An alternative would have been to
eliminate this variable from the set of adjoint equations while
simultaneously eliminating one of the adjoint conditions. In
a single instance, this may indeed be useful, but when rely-
ing on a general-purpose implementation as envisioned in a
planned future implementation of COCO, it is better to retain
the variable and use its numerical value as an indicator of the
accuracy of the solution.

There are a number of directions to go in future work.
These include consideration of circumstances in which the
ratio α/T violates one or several of the inequalities assumed
in the previous sections during continuation. Such violations
may necessitate a piecewise definition of the Lagrangian
across parameter space with different segmentations of the
governing differential equations in each region. Problems
with multiple delays, as well as problems with state- or time-
dependent delays could also be explored as motivated by par-
ticular applications.
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Appendix

We review the application of the method of multiple scales
to the optimal selection of a time delay that results in a mini-
mal peak displacement amplitude in the harmonically-forced
response of a Duffing oscillator under delayed displacement
and velocity feedback, as discussed in Sect. 3.1.

Consider the delay-differential equation

z̈(t)+2εζ ż(t)+ z(t)+ εµz3 (t) = 2εaz(t−α)

+2εbż(t−α)+ εγ cos((1+ εσ)t) (76)

for 0 < ε � 1. We seek an approximate solution of the form

z(t) = z0 (T0,T1, . . .)+ εz1 (T0,T1, . . .)+ · · · , (77)

where Ti = ε it. To leading order in ε ,

z0 (T0,T1, . . .) = A(T1, . . .)eiT0 + cc, (78)

where cc denotes complex conjugate terms. Elimination of
secular terms at higher orders in ε then yields a set of con-
ditions on the derivatives of the complex amplitude A with
respect to its arguments. In particular, if we let

A(T1, . . .) =
1
2

ρ(T1, . . .)eiσT1−ϕ(T1,...), (79)

it follows from the first-order analysis that steady-state os-
cillations with angular frequency 1+εσ result provided that

1
2

γ sinϕ = ζ ρ +aρ sinα−bρ cosα, (80)

1
2

γ cosϕ = ρ

(
σ +acosα +bsinα− 3µρ2

8

)
. (81)

Elimination of ϕ yields the desired, implicit, frequency-
amplitude relationship

ρ
2
(

σ +acosα +bsinα− 3µρ2

8

)2

+

ρ
2 (ζ +asinα−bcosα)2− γ2

4
= 0, (82)

from which we deduce the maximum value of ρ given by

ρmax
.
=

γ

2|ζ +asinα−bcosα|
(83)

obtained when

σ =
3µρ2

max

8
−acosα−bsinα. (84)

In the special case that b = −a, the maximum value of ρ

achieves the local minimum γ/2(ζ +
√

2a)2 for α = π/4,
while for b = 0, the local minimum γ/2(ζ +a)2 is obtained
when α = π/2.


