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Improving the problem condition in control-based continuation experiments
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∗Department of Mathematics, University of Portsmouth, Portsmouth, United Kingdom

Summary. Simple mechanical prototype experiments have shown that it is possible to track (continue) branches of periodic orbits and
equilibria regardless of their dynamical stability in physical experiments. The only prerequisite for continuation of unstable orbits is the
presence of a tunable system parameter and a stabilizing feedback loop.This paper discusses problems that show up when continuing
branches in ill-conditioned (or singularly perturbed) problems.

Background

Figure 1(a) shows a general schematic of the setup in which one can apply numerical continuation methods [4] in physical
experiments [7]. Assume that one wants to learn about a branch of periodic orbits occuring in a nonlinear experiment that
has a tunable system parameterp. For example, in [1, 2], which investigates a nonlinear 1dofoscillator subjected to har-
monic forcing f = asin(ωt), the system parameterp ∈ R

2 consists of the forcing frequencyω and the forcing amplitude
a. In the schematic the black/grey parts indicate the parts that comprise the original,uncontrolled, experiment. Adding
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General schematic Barton & Burrow (2011)

Figure 1: (a) Schematic of experiment with tunable system parameterp, control inputu, outputy and added feedback loop. (b) result
of continuation of periodic orbits in a forced 1dof oscillator varying the frequency [1].

a feedback loop (shown in red in Figure 1(a)) then helps one tolearn about unstable periodic orbits of the uncontrolled
experiment in the following way:

1. set a periodic reference signalyref(t) as periodic input at pointA and a system parameterp,

2. wait until the outputy(t) has settled to a periodic signal,

3. check the differenceF(yref, p) = y(t)− yref(t), which is a periodic signal.

If F(yref, p) = 0 thenyref(t) is the output corresponding to a periodic orbit of the uncontrolled experiment. This at first
sight cumbersome approach permits one to find also dynamically unstable periodic orbits or periodic orbits that are too
close to bifurcations to be accessible by classical parameter sweeps.
The main practical requirement on the setup is that the feedback loop (the red parts of Figure 1(a)) isstabilizing and
non-invasive. More specifically, this means:

• (control is non-invasive) ifyref(t)− y(t) = 0 thenu(t) → 0 for t → ∞.

• (control is stabilizing) the inputsyref and p determine locally uniquely the outputy (after discarding transients),
which must be periodic and have the same period asyref. Moreover, the outputy depends smoothly on the inputs
yref andp.

These two conditions imply that the mapF : (p,yref) 7→ y defined above is a well defined smooth map and that its roots are
periodic orbits of the uncontrolled experiment. One can apply numerical root finding routines (that is, Newton iterations or
quasi-Newton iterations [7]) and pseudo-arclength continuation toF to find periodic orbits of the uncontrolled experiment
regardless of their dynamical stability. The results by [1]shown in Figure 1(b) were obtained by applying a Newton
iteration only to the first Fourier coefficients ofyref and correcting all other Fourier coefficients with a Pyragastype time-
delayed difference scheme [6]. The control inputu was not a separate input in [1]. Rather the inputu was added to the
harmonic forcing such that the experiment had a single (time-dependent) inputf = asin(ωt)+PD[y− yref](t).

Improving the condition of the nonlinear problem

The main difficulty limiting the applicability of control-based continuation is, of course, the implementation of the stabi-
lizing feedback loop. This problem is specific to each experiment and has to be solved anew in every application. The
next limiting factor is that the mapF , which is fed into the Newton iteration, can be evaluated only with low accuracy: the
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leading Fourier coefficients ofF are known with an accuracyε ∼ tolmeas/
√

N. In this estimate tolmeasis the tolerance of
the measurements ofy(t) and the adjustments ofu(t) (in [1] this is the accuracy with which the trajectory of the actuator
driving the oscillator can be prescribed). The numberN is the number of sampling points per period (assuming tlhat the
errors in the measurements and adjustments are independentrandom fluctuations).
This implies that we cannot expectε to be significantly smaller than 10−2 to 10−3 in mechanical experiments. The limited
accuracy in the evaluation ofF imposes a limit on the admissible condition of the Jacobian∂F(yref, p) when solving for
roots ofF . In Figure 1(b) the zoom-in near the fold shows that for the experiment of [1] the uncertainty in the phase is
already considerable. One likely source of this uncertainty is a bad (large) condition of∂F(yref, p). The computational
results in Figure 2 show the condition of∂F(yref, p) for the prototypical weakly damped and weakly (hamornically) forced
Duffing oscillator with hardening spring

ẍ+ ε ẋ+ k1x+ k3x3 = ac cos(ωt)+as sin(ωt), (1)

whereε is small andac, as ∼ ε. Panel (a) shows the amplitude and the phase (relative to theforcing) of the solution(x, ẋ)
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Figure 2: Linearized condition of nonlinear system for harmonically forced Duffing oscillator withε = 10−3, k1 = k3 = (2π)2

depending the forcing frequencyω. Panel (b) shows‖∂F−1‖2 for various extensionsp. They-axis matches the phase of
the solution in panel (a), acting as a parameter along the resonance curve. Thex-axis shows the norm of the inverse of
∂F in logarithmic scale (‖∂F‖2 is uniformly bounded). Ifp consists only of the primary continuation parameterω then
‖∂F−1‖2 ∼ O(ε−1) along the entire resonance curve, Ifp consists ofω and the phase of the forcing (for example, by
continuing inp = (ω,ac,as) but keeping

√
a2

c +a2
s fixed) then‖∂F−1‖2 approaches orderε−1 only in one point along the

curve. If p consists of(ω,ac) (that is, one continues in frequency and amplitude) then‖∂F−1‖2 is at worst of orderε−1/2.
The worst condition occurs at thebase of the resonance peak (forε = 0 a pitchfork bifurcation occurs there, giving rise
to this singularity). Ifp consists of(ω,ac,as) then‖∂F−1‖2 is bounded independent ofε. This provides a compelling
case for using multi-parameter continuation techniques inexperimental contexts to keep the condition of the nonlinear
system small even if one is interested only in a submanifold of the solution manifold. The curves in Figure 2 have been
obtained using basic simplex augmentation along the line (or cylinder)

√
a2

c +a2
s = 8ε. General-purpose multi-parameter

continuation codes such as Multifario ([5], to be linked to COCO [3]) are expected to provide a more robust solution and
will be explored in the future.
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