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Improving the problem condition in control-based continuation experiments
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Summary. Simple mechanical prototype experiments have shown that it is possibéeko(tontinue) branches of periodic orbits and
equilibria regardless of their dynamical stability in physical experimeriie.only prerequisite for continuation of unstable orbits is the
presence of a tunable system parameter and a stabilizing feedbacR lispaper discusses problems that show up when continuing
branches in ill-conditioned (or singularly perturbed) problems.

Background

Figure 1(a) shows a general schematic of the setup in whieltan apply numerical continuation methods [4] in physical
experiments [7]. Assume that one wants to learn about a braingeriodic orbits occuring in a nonlinear experiment that
has a tunable system paramgpei~or example, in [1, 2], which investigates a nonlinear lakfillator subjected to har-
monic forcingf = asin(wt), the system parameterc R? consists of the forcing frequeney and the forcing amplitude

a. In the schematic the black/grey parts indicate the paasdbmprise the originalncontrolled, experiment. Adding
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Figure 1: (a) Schematic of experiment with tunable system paramgetentrol inputu, outputy and added feedback loop. (b) result
of continuation of periodic orbits in a forced 1dof oscillator varying thej@rency [1].

a feedback loop (shown in red in Figure 1(a)) then helps oreaim about unstable periodic orbits of the uncontrolled
experiment in the following way:

1. seta periodic reference signal(t) as periodic input at poirA and a system parametey
2. wait until the outpuy(t) has settled to a periodic signal,
3. check the differencE (yret, p) = ¥(t) — Vret(t), which is a periodic signal.

If F(yret, p) = O thenyes(t) is the output corresponding to a periodic orbit of the unawled experiment. This at first
sight cumbersome approach permits one to find also dyndsnimastable periodic orbits or periodic orbits that are too
close to bifurcations to be accessible by classical pammseteeps.

The main practical requirement on the setup is that the faeldoop (the red parts of Figure 1(a))dsbiliziing and
non-invasive. More specifically, this means:

e (control is non-invasive) ifef(t) — y(t) = 0 thenu(t) — 0 fort — oo.

e (control is stabilizing) the inputg.er and p determine locally uniquely the outpyt(after discarding transients),
which must be periodic and have the same periogasMoreover, the outpuy depends smoothly on the inputs
Yref @ndp.

These two conditions imply that the m&p (p, yrer) — Y defined above is a well defined smooth map and that its roots are
periodic orbits of the uncontrolled experiment. One carlyappmerical root finding routines (that is, Newton iterauscor
guasi-Newton iterations [7]) and pseudo-arclength camtiion toF to find periodic orbits of the uncontrolled experiment
regardless of their dynamical stability. The results by ghbwn in Figure 1(b) were obtained by applying a Newton
iteration only to the first Fourier coefficients yfs and correcting all other Fourier coefficients with a Pyratyae time-
delayed difference scheme [6]. The control inpwas not a separate input in [1]. Rather the inputas added to the
harmonic forcing such that the experiment had a single ¢(degendent) input = asin(wt) + PD[y — Yref] ().

Improving the condition of the nonlinear problem

The main difficulty limiting the applicability of controldsed continuation is, of course, the implementation of thleis
lizing feedback loop. This problem is specific to each experit and has to be solved anew in every application. The
next limiting factor is that the map, which is fed into the Newton iteration, can be evaluated ovith low accuracy: the
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leading Fourier coefficients ¢ are known with an accuragy~ tolmeas’v/N. In this estimate t@leasis the tolerance of
the measurements gft) and the adjustments oft) (in [1] this is the accuracy with which the trajectory of thefuator
driving the oscillator can be prescribed). The numias the number of sampling points per period (assuming that t
errors in the measurements and adjustments are indepeadéeom fluctuations).

This implies that we cannot expexto be significantly smaller than 18to 10-2 in mechanical experiments. The limited
accuracy in the evaluation 6f imposes a limit on the admissible condition of the JacoBiBiy,et, p) when solving for
roots of F. In Figure 1(b) the zoom-in near the fold shows that for theeeiment of [1] the uncertainty in the phase is
already considerable. One likely source of this uncenyamt bad (large) condition a@F (yref, p). The computational
results in Figure 2 show the condition@ (y;ef, p) for the prototypical weakly damped and weakly (hamornjgdtirced
Duffing oscillator with hardening spring

%+ x4 kix+ kax® = ac cog wt) + assin(wt), (1)

whereg is small anda;, as ~ €. Panel (a) shows the amplitude and the phase (relative forttiag) of the solutior(x, X)
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Figure 2: Linearized condition of nonlinear system for harmonicallyddrbuffing oscillator withe = 1073, ky = k3 = (2m)2

depending the forcing frequency. Panel (b) show#dF 1|, for various extensionp. They-axis matches the phase of
the solution in panel (a), acting as a parameter along tfenaexe curve. The-axis shows the norm of the inverse of
JF in logarithmic scale|(dF ||, is uniformly bounded). lfp consists only of the primary continuation parametethen
|0F ~||]2 ~ O(¢~1) along the entire resonance curve pltonsists ofw and the phase of the forcing (for example, by
continuing inp = (w, ac, as) but keepingv a2 + a2 fixed) then||dF ~2||, approaches order* only in one point along the
curve. Ifp consists of w, a.) (that is, one continues in frequency and amplitude) thf 1|, is at worst of ordee /2,
The worst condition occurs at thiase of the resonance peak (fer= 0 a pitchfork bifurcation occurs there, giving rise
to this singularity). Ifp consists of{w, ac, as) then||dF ~1||, is bounded independent ef This provides a compelling
case for using multi-parameter continuation techniquesxjmerimental contexts to keep the condition of the nontinea
system small even if one is interested only in a submanifélti® solution manifold. The curves in Figure 2 have been
obtained using basic simplex augmentation along the lineyiinder) v'aZ + a2 = 8¢. General-purpose multi-parameter
continuation codes such as Multifario ([5], to be linked t©CO [3]) are expected to provide a more robust solution and
will be explored in the future.
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