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There is currently much interest in examining climatic tipping points, to see if it is feasible to predict
them in advance. Using techniques from bifurcation theory, recent work looks for a slowing down of
the intrinsic transient responses, which is predicted to occur before an instability is encountered. This
is done, for example, by determining the short-term autocorrelation coefficient ARC(1) in a sliding
window of the time series: this stability coefficient should increase to unity at tipping. Such studies
have been made both on climatic computer models and on real paleoclimate data preceding ancient
tipping events. The latter employ re-constituted time-series provided by ice cores, sediments, etc, and
seek to establish whether the actual tipping could have been accurately predicted in advance. One
such example is the end of the Younger Dryas event, about 11,500 years ago, when the Arctic warmed
by 7◦C in 50 years. A second gives an excellent prediction for the end of ’greenhouse’ Earth about
34 million years ago when the climate tipped from a tropical state into an icehouse state, using data
from tropical Pacific sediment cores. This prediction science is very young, but some encouraging
results are already being obtained. Future analyses will clearly need to embrace both real data from
improved monitoring instruments, and simulation data generated from increasingly sophisticated
predictive models.
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1. Introduction

Predicting the future climate is now a major challenge to the world, as witnessed by the recent Copenhagen
Conference and its sequels. In studying changes to the Earth’s climate, perhaps the most important feature to
watch out for, and try to anticipate, is a so-called tipping point at which the climate makes a sudden, and often
irreversible, change. Major events of this type are well documented in geological records, striking examples being
the on-and-off switching of prehistoric ice ages, as illustrated in Figure 1. The current reason for concern is the

Fig. 1. Correlation between the CO2 concentration and temperature during the prehistoric ice ages, showing the variation of the ice
volume and human development.

apparently coordinated increase of the average global temperate and the percentage of carbon dioxide in the
atmosphere, as illustrated in Figure 2. Many scientists believe, firstly, that the rise in CO2 concentration is due
to human activity (especially the burning of fossil fuels), and secondly that it is this rise in CO2 levels that is
causing the rise in temperature. The concern, then, is that this temperature rise (which itself would have serious
consequences for agriculture and flooding) might cause a climate tipping of major proportions.

The analysis and prediction of tipping points, often focused on climate subsystems, is currently being pursued
in several streams of research, and we should note in particular the excellent book by Marten Scheffer [Scheffer,
2009], ’Critical Transitions in Nature and Society’, which includes ecological and climatic studies. Some brief
remarks about abrupt and rapid climate change were made by the Intergovernmental Panel on Climate Change
[IPCC, 2007], and more recently Lenton et al. [2008] have sought to define these points rigorously.

Table 1 shows a list of subsystem candidates proposed by Lenton et al. [2008], and the possible effects of
their tipping on the global climate. All of these subsystems have strong internal positive feedback mechanisms.
Thus, they have a certain propensity for tipping and are susceptible to input (human or otherwise). We should
note that Lenton’s first element is the shrinking of the Arctic summer sea ice, which is progressing rapidly and is
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Fig. 2. Correlation between the CO2 concentration and temperature during recent times, illustrating the concern about global warming.
Based on a composite picture from the Woods Hole Research Centre.

causing considerable concern. The changes over a 23 year span are shown in two NASA photographs in Figure 3.

Fig. 3. Two NASA satellite photographs, showing the reduction of Arctic snow and ice cover over a 23 year interval. Source: http:
//nasascience.nasa.gov/images/about-us/accomplishments/YIR2004_arctic.jpg

As column 2 of Table 1 shows, the primary deterministic mechanisms behind several of the listed tipping events
are so-called bifurcations, special points in the control parameter space (see columns 4 and 5) at which the
deterministic part of the dynamical system governing the climate changes qualitatively (for example, the currently
attained steady state disappears).

In Section 3 we review possible bifurcations and classify them into three types, safe, explosive and dangerous.
Almost universally these bifurcations have a precursor: in at least one mode all feedback effects cancel at the
linear level, which means that the system is slowing down, and the local (or linear) decay rate (LDR) to the steady
state decreases to zero.

Most of the relevant research is devoted to creating climate models from first principles, tuning and initializing
these models by assimilating geological data, and then running simulations of these models to predict the future.

http://nasascience.nasa.gov/images/about-us/accomplishments/YIR2004_arctic.jpg
http://nasascience.nasa.gov/images/about-us/accomplishments/YIR2004_arctic.jpg


February 7, 2011 13:23 Thompson2010

4 J.M.T. Thompson, J. Sieber

Ta
b

le
1.

Su
m

m
ar

y
o

f
L

en
to

n’
s

T
ip

p
in

g
E

le
m

en
ts

,
n

am
el

y
cl

im
at

e
su

b
sy

st
em

s
th

at
ar

e
li

ke
ly

to
b

e
ca

n
d

id
at

es
fo

r
fu

tu
re

ti
p

p
in

g
w

it
h

re
le

va
n

ce
to

p
ol

it
ic

al
d

ec
is

io
n

m
ak

in
g.

In
co

lu
m

n
2,

th
e

p
os

si
b

ili
ty

of
th

er
e

b
ei

n
g

an
u

n
d

er
ly

in
g

b
if

u
rc

at
io

n
is

in
d

ic
at

ed
as

fo
llo

w
s:

b
la

ck
=h

ig
h

,
gr

ay
=

m
ed

iu
m

,w
h

it
e=

lo
w

.N
o

ti
ce

th
at

in
co

lu
m

n
fo

u
r

E
E

P
d

en
o

te
s

th
e

E
as

te
rn

E
q

u
at

o
ri

al
P

ac
ifi

c
an

d
in

th
e

la
st

co
lu

m
n

IT
C

Z
d

en
o

te
s

th
e

In
te

rt
ro

p
ic

al
C

o
n

ve
rg

en
ce

Z
o

n
e.

T
h

is
lis

tw
il

lb
e

d
is

cu
ss

ed
in

gr
ea

te
r

d
et

ai
li

n
Se

ct
io

n
5.

T
ip

p
in

g
el

em
en

t
Fe

at
u

re
,F

(c
h

an
ge

)
C

o
n

tr
o

lp
ar

am
et

er
,µ

µ
cr

it
G

lo
b

al
w

ar
m

in
g

Tr
an

si
ti

o
n

ti
m

e,
T

K
ey

im
p

ac
ts

A
rc

ti
c

su
m

m
er

se
a-

ic
e

A
re

al
ex

te
n

t
(-

)
Lo

ca
l∆

T
ai

r,
o

ce
an

h
ea

tt
ra

n
sp

o
rt

??
+0

.5
to

+2
◦ C

∼
10

yr
s

(r
ap

id
)

A
m

p
li

fi
ed

w
ar

m
in

g,
ec

o
sy

st
em

ch
an

ge

G
re

en
la

n
d

ic
e

sh
ee

t
(G

IS
)

Ic
e

vo
lu

m
e

(-
)

Lo
ca

l∆
T

ai
r

∼
+3

◦ C
+1

to
+2

◦ C
>

30
0

yr
s

(s
lo

w
)

Se
a

le
ve

l+
2

to
+7

m

W
es

ta
n

ta
rc

ti
c

ic
e

sh
ee

t
(W

A
IS

)
Ic

e
vo

lu
m

e
(-

)
Lo

ca
l∆

T
ai

r
o

r,
le

ss
∆

T
o

ce
an

+5
to

+8
◦ C

+3
to

+5
◦ C

>
30

0
yr

s
(s

lo
w

)
Se

a
le

ve
l+

5m

A
tl

an
ti

c
th

er
m

o
h

al
in

e
ci

rc
u

la
ti

o
n

O
ve

rt
u

rn
in

g
(-

)
Fr

es
h

w
at

er
in

p
u

tt
o

N
o

rt
h

A
tl

an
ti

c
+0

.1
to

+0
.5

Sv
+3

to
+5

◦ C
∼

10
0

yr
s

(g
ra

d
u

al
)

R
eg

io
n

al
co

o
li

n
g,

se
a

le
ve

l,
IT

C
Z

sh
if

t

E
lN

iñ
o

So
u

th
er

n
o

sc
ill

at
io

n
A

m
p

li
tu

d
e

(+
)

T
h

er
m

o
cl

in
e

d
ep

th
,

sh
ar

p
n

es
s

in
E

E
P

??
+3

to
+6

◦ C
∼

10
0

yr
s

(g
ra

d
u

al
)

D
ro

u
gh

ti
n

SE
A

si
a

an
d

el
se

w
h

er
e

In
d

ia
n

su
m

m
er

m
o

n
so

o
n

(I
SM

)
R

ai
n

fa
ll

(-
)

P
la

n
et

ar
y

al
b

ed
o

ov
er

In
d

ia
0.

5
N

/A
∼

1
yr

(r
ap

id
)

D
ro

u
gh

t,
d

ec
re

as
ed

ca
rr

yi
n

g
ca

p
ac

it
y

Sa
h

ar
a/

Sa
h

el
an

d
W

.
A

fr
ic

an
m

o
n

so
o

n
Ve

ge
ta

ti
o

n
fr

ac
ti

o
n

(+
)

P
re

ci
p

it
at

io
n

10
0

m
m

/y
r

+3
to

+5
◦ C

∼
10

yr
s

(r
ap

id
)

In
cr

ea
se

d
ca

rr
yi

n
g

ca
p

ac
it

y

A
m

az
o

n
ra

in
-f

o
re

st
Tr

ee
fr

ac
ti

o
n

(-
)

P
re

ci
p

it
at

io
n

,d
ry

se
as

o
n

le
n

gt
h

1,
10

0
m

m
/y

r
+3

to
+4

◦ C
∼

50
yr

s
(g

ra
d

u
al

)
B

io
d

iv
er

si
ty

lo
ss

,
d

ec
re

as
ed

ra
in

fa
ll

B
o

re
al

fo
re

st
Tr

ee
fr

ac
ti

o
n

(-
)

Lo
ca

l∆
T

ai
r

∼
+7

◦ C
+3

to
+5

◦ C
∼

50
yr

s
(g

ra
d

u
al

)
C

h
an

ge
in

ty
p

e
o

ft
h

e
ec

o
sy

st
em



February 7, 2011 13:23 Thompson2010

Predicting climate tipping as a noisy bifurcation: a review 5

Climate models come in varying degrees of sophistication and realism, more complex ones employing up to
3×108 variables [Dijkstra, 2008]. Predictions do not rely solely on a single ‘best model’ starting from the ‘real
initial conditions’. Typically, all qualified models are run from ensembles of initial conditions and then a statistical
analysis over all generated outcomes is performed [IPCC, 2007].

An alternative to the model and simulate approach (and in some sense a short-cut) is to realize that math-
ematically some of the climate-tipping events correspond to bifurcations (see Section 3 for a discussion), and
then to use time-series analysis techniques to extract precursors of these bifurcations directly from observational
data. This method still benefits from the modelling efforts because simulations generated by predictive models
allow analysts to hone their prediction techniques on masses of high quality data, with the possibility of seeing
whether they can predict what the computer eventually displays as the outcome of its run. Transferring these
techniques to real data from the Earth itself is undoubtedly challenging. Still, bifurcation predictions directly from
real time series will be a useful complement to modelling from first principles because they do not suffer from all
the many difficulties of building and initializing reliable computer models. Our review discusses the current state
of bifurcational predictions in climate time-series, focussing on methods introduced by Held & Kleinen [2004] and
Livina & Lenton [2007]. Held and Kleinen analyse the collapse of the global conveyor belt of oceanic water, the
thermohaline circulation (THC). This conveyor is important, not only for the water transport, per se, but because
of the heat and salt that it redistributes.

The paper by Livina & Lenton [2007] is particularly noteworthy in that it includes what seems to be the
first bifurcational predictions using real data, namely the Greenland ice-core paleo-temperature data spanning
the time from 50,000 years ago to the present. The unevenly spaced data comprised 1586 points and their DFA-
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Fig. 4. Results of Livina & Lenton [2007] for the end of the last glaciation (a) Greenland ice-core (GISP2) paleo-temperature with an
unevenly spaced record, visible in the varying density of symbols on the curve. The total number of data points is N = 1586. In (b) the
DFA1-propagator is calculated in sliding windows of length 500 points and mapped into the middle points of the windows. The results of a
second and much more local study by Dakos et al. [2008] (that we shall be discussing in Figure 14) are highlighted by the red circle.

propagator (this quantity reaches +1 when the local decay rate vanishes; see Section 4.1) was calculated in sliding
windows of length 500 data points. The results are shown in Figure 4, and the rapid warming at the end of the
Younger Dryas event, around 11,500 years before the present is anticipated by an upward trend in the propagator,
which is heading towards its critical value of +1 at about the correct time. With the data set running over tens of
thousands of years, this study should be seen primarily as an estimate of the end of the last glaciation, rather than
the Younger Dryas event itself. The sliding window that ends near the tipping is highlighted, and we note that (as
we emphasize at the end of Section 4.1), from a prediction point of view, the propagator estimates would end at
point A. The grey propagator curve beyond A uses time-series points beyond the tipping point, which would not
normally be available: in any event, they should not be used, because they contaminate the grey results with data
from a totally different climatic state.

In a second notable paper, Dakos et al. [2008] systematically estimated the LDR for real data in their analysis
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of eight ancient tipping events via reconstructed time series. These are:

(a) the end of the greenhouse Earth about 34 million years ago when the climate tipped from a tropical state (which
had existed for hundreds of millions of years) into an icehouse state with ice caps, using data from tropical
Pacific sediment cores,

(b) the end of the last glaciation, and the ends of three earlier glaciations, drawing data from the Antarctica Vostok
ice core,

(c) the Bølling-Alleröd transition which was dated about 14,000 years ago, using data from the Greenland GISP2 ice
core,

(d) the end of the Younger Dryas event about 11,500 years ago when the Arctic warmed by 7◦C in 50 years, drawing
on data from the sediment of the Cariaco basin in Venezuela. This examines at a much shorter time scale, and
with different data, the transition of Figure 4.

(e) the desertification of North Africa when there was a sudden shift from a savanna-like state with scattered lakes
to a desert about 5,000 years ago, using the sediment core from ODP Hole 658C, off the west coast of Africa.

In all of these cases, the dynamics of the system are shown to slow down before the transition. This slow-down
was revealed by a short-term autocorrelation coefficient, ARC(1), of the time series which examines to what extent
a current point is correlated to its preceding point. It gives an estimate of the LDR, and is expected to increase
towards unity at an instability, as described in Section 4.

2. Climate Models as Dynamical Systems

Thinking about modelling is a good introduction to the ideas involved in predicting climate change, so we will
start from this angle. Now, to an applied mathematician, the Earth’s climate is just a very large dynamical system
that evolves in time. Vital elements of this system are the Earth itself, its oceans and atmosphere, and the plants
and animals that inhabit it (including, of course, ourselves). In summary, the five key components are often listed
succinctly as atmosphere, ocean, land, ice, and biosphere. Arriving as external stimuli to this system are sunlight
and cosmic rays, etc: these are usually viewed as driving forces, often just called forcing. In modelling the climate
we need not invoke the concepts of quantum mechanics (for the very small) or relativity theory (for the very big or
fast).

So one generally considers a system operating under the deterministic rules of classical physics, employing, for
example, Newton’s Laws for the forces, and their effects, between adjacent large blocks of sea water or atmosphere.
A block in the atmosphere might extend 100 km by 100 km horizontally and 1 km vertically, there being perhaps
20 blocks stacked vertically over the square base: for example, in a relatively low resolution model, Selten et al.
[2004] use blocks of size 3.75◦ in latitude and longitude with 18 blocks stacked vertically in their simulation. (For
current high resolution models see [IPCC, 2007]). So henceforth in this section, we will assume that the climate
has been modelled primarily as a large deterministic dynamical system evolving in time according to fixed rules.
For physical, rather than biological entities, these rules will usually relate to adjacent (nearest-neighbour) objects
at a particular instant of time (with no significant delays or memory effects). It follows that our climate model
will have characteristics in common with the familiar mechanical systems governed by Newton’s laws of motion.
From a given set of starting conditions (positions and velocities of all the components, for example), and external
deterministic forcing varying in a prescribed fashion with time, there will be a unique outcome as the model
evolves in time. Plotting the time-evolution of these positions and velocities in a conceptual multi-dimensional
phase space is a central technique of dynamical systems theory.

Despite the unique outcome, the results of chaos theory remind us that the response may be essentially
unknowable over time scales of interest because it can depend with infinite sensitivity on the starting conditions
(and on the numerical approximations used in a computer simulation). To ameliorate this difficulty, weather
and climate forecasters now often make a series of parallel simulations from an ensemble of initial conditions
which are generated by adding different small perturbations to the original set: and they then repeat all of this
on different models. This ensemble approach, pioneered by Tim Palmer and others, is described by Buizza et al.
[1998] and Sperber et al. [2001].

Mechanical systems are of two main types. First is the idealized closed conservative (sometimes called
Hamiltonian) system in which there is no input or output of energy, which is therefore conserved. These can be
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useful in situations where there is very little ‘friction’ or energy dissipation, such as when studying the orbits of the
planets. A conservative system, like a pendulum with no friction at the pivot and no air resistance, tends to move
for ever: it does not exhibit transients, and does not have any attractors. Second, is the more realistic dissipative
system where energy is continuously lost (or dissipated). An example is a real pendulum which eventually comes
to rest in the hanging-down position, which we call a point attractor. A more complex example is a damped
pendulum driven into resonance by steady harmonic forcing from an AC electromagnet: here, after some irregular
transient motion, the pendulum settles into a stable ‘steady’ oscillation, such as a periodic attractor or a chaotic
attractor. In general, a dissipative dynamical system will settle from a complex transient motion to a simpler
attractor as the time increases towards infinity. These attractors, the stable steady states of the system, come
in four main types: the point attractors, the periodic attractors, the quasi-periodic (toroidal) attractors and the
chaotic attractors [Thompson & Stewart, 2002].

Climate models will certainly not be conservative, and will dissipate energy internally, though they also have
some energy input: they can be reasonably expected to have the characteristics of the well- studied dissipative
systems of (for example) engineering mechanics, and are, in particular, well known to be highly nonlinear.

3. Concepts from Bifurcation Theory

A major component of nonlinear dynamics is the theory of bifurcations, these being points in the slow evolution
of a system at which qualitative changes or even sudden jumps of behaviour can occur.

In the field of dissipative dynamics co-dimension-1 bifurcations are those events that can be ’typically’
encountered under the slow sweep of a single control parameter. A climate model will often have (or be assumed
to have) such a parameter under the quasi-static variation of which the climate is observed to gradually evolve
on a ’slow’ timescale. Slowly varying parameters are external influences that vary on geological time-scales, for
example, the obliquity of the Earth’s orbit. Another common type of slowly varying parameter occurs if one models
only a subsystem of the climate, for example, oceanic water circulation. Then the influence of an interacting
subsystem (for example, freshwater forcing from melting ice sheets) acts as a parameter that changes slowly over
time.

An encounter with a bifurcation during this evolution will be of great interest and significance, and may give
rise to a dynamic jump on a much faster timescale. A complete list of the (typical) co-dimension-1 bifurcations, to
the knowledge of the authors at the time of writing, is given by Thompson & Stewart [2002]. It is this list of local
and global bifurcations that is used to populate Tables 2 to 5. The technical details and terminology of these tables
need not concern the general reader, but they do serve to show the vast range of bifurcational phenomena that
can be expected even in the simplest nonlinear dynamical systems, and certainly in climate models.

A broad classification of the co-dimension-1 attractor bifurcations of dissipative systems into safe, explosive
and dangerous forms [Thompson et al., 1994] is illustrated in Tables 2 to 4 and Figure 5, while all are summarized
in Table 5 together with notes on their precursors. It must be emphasized that these words are used in a technical
sense. Even though in general the safe bifurcations are often literally safer than the dangerous bifurcations, in
certain contexts this may not be the case. In particular, the safe bifurcations can still be in a literal sense very
dangerous: as when a structural column breaks at a ‘safe’ buckling bifurcation!

Note carefully here that when talking about bifurcations we use the word ‘local’ to describe events that are
essentially localized in phase space. Conversely we use the word ‘global’ to describe events that involve distant
connections in phase space. With this warning, there should be no chance of confusion with our use, elsewhere,
of the word ‘global’ in its common parlance as related to the Earth.

In Tables 2–4 we give the names of the bifurcations in the three categories, with alternative names given in
parentheses. We then indicate the change in the type of attractor that is produced by the bifurcation, such as a
point to a cycle, etc. Some of the attributes of each class (safe, explosive or dangerous) are then listed at the foot of
each table. Among these attributes, the concept of a basin requires some comment here. In the multi-dimensional
phase space of a dissipative dynamical system (described in Section 2) each attractor, or stable state, is surrounded
by a region of starting points from which a displaced system would return to the attractor. The set of all these
points constitutes the basin of attraction. If the system were displaced to, and then released from any point
outside the basin, it would move to a different attractor (or perhaps to infinity). Basins also undergo changes
and bifurcations, but for simplicity of exposition in this brief review we focus on the more common attractor
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bifurcations. Notice, though, that the ’basin boundary collision’ discussed by Scheffer [2009] in connection with
the population dynamics of fish eating zooplankton eating phytoplankton is simply our saddle connection of
Table 4.

Table 2. Safe bifurcations. These include the supercritical forms of the local bifurcations and
the less well-known global ‘band merging’. The latter is governed by a saddle-node event on a
chaotic attractor. Alternative names are given in brackets.

Safe Bifurcations

(a) Local Supercritical Bifurcations
1. Supercritical Hopf
2. Supercritical Neimark-Sacker (secondary Hopf)
3. Supercritical Flip (period-doubling)

(b) Global Bifurcations
4. Band Merging

Point to cycle
Cycle to torus
Cycle to cycle

Chaos to chaos

These bifurcations are characterized by the following features:

SUBTLE: continuous supercritical growth of new attractor path
SAFE: no fast jump or enlargement of the attracting set
DETERMINATE: single outcome even with small noise
NO HYSTERESIS: path retraced on reversal of control sweep
NO BASIN CHANGE: basin boundary remote from attractors
NO INTERMITTENCY: in the responses of the attractors

Table 3. Explosive bifurcations. These are less common global events, which occupy an interme-
diate position between the safe and dangerous forms. Alternative names are given in brackets.

Explosive Bifurcations

5. Flow Explosion (omega explosion, SNIPER)
6. Map Explosion (omega explosion, mode-locking)
7. Intermittency Explosion: Flow
8. Intermittency Explosion: Map (temporal intermittency)
9. Regular-Saddle Explosion (interior crisis)

10. Chaotic-Saddle Explosion (interior crisis)

Point to cycle
Cycle to torus
Point to chaos
Cycle to chaos
Chaos to chaos
Chaos to chaos

These bifurcations are characterized by the following features:

CATASTROPHIC: global events, abrupt enlargement of attracting set
EXPLOSIVE: enlargement, but no jump to remote attractor
DETERMINATE: with single outcome even with small noise
NO HYSTERESIS: paths retraced on reversal of control sweep
NO BASIN CHANGE: basin boundary remote from attractors
INTERMITTENCY: lingering in old domain, flashes through the new

In Figure 5 we have schematically illustrated three bifurcations that are co-dimension-1, meaning that they can
be typically encountered under the variation of a single control parameter, µ, which is here plotted horizontally
in the left column. The response, q , is plotted vertically. To many applied mathematicians, the most common
(safe) bifurcation is what is called the supercritical pitchfork or stable-symmetric point of bifurcation [Thompson
& Hunt, 1973]. This was first described by Euler [1744] in his classic analysis of the buckling of a slender elastic
column, and is taught to engineering students as ‘Euler buckling’ in which the load carried by the column is the
control parameter. Poincaré [1885] explored a number of applications in astro-physics. In this event, the trivial
primary equilibrium path on which the column has no lateral deflection (q = 0), becomes unstable at a critical



February 7, 2011 13:23 Thompson2010

Predicting climate tipping as a noisy bifurcation: a review 9

Table 4. Dangerous bifurcations. These include the ubiquitous folds where a path reaches
a smooth maximum or minimum value of the control parameter, the subcritical local bifur-
cations, and some global events. They each trigger a sudden jump to a remote ’unknown’
attractor. In climate studies these would be called tipping points, as indeed might other
nonlinear phenomena. Alternative names are given in brackets.

Dangerous Bifurcations

(a) Local Saddle-Node Bifurcations
11. Static Fold (saddle-node of fixed point)
12. Cyclic Fold (saddle-node of cycle)

(b) Local Subcritical Bifurcations
13. Subcritical Hopf
14. Subcritical Neimark-Sacker (secondary Hopf)
15. Subcritical Flip (period-doubling)

(c) Global Bifurcations
16. Saddle Connection (homoclinic connection)
17. Regular-Saddle Catastrophe (boundary crisis)
18. Chaotic-Saddle Catastrophe (boundary crisis)

from Point
from Cycle

from Point
from Cycle
from Cycle

from Cycle
from Chaos
from Chaos

These bifurcations are characterized by the following features:

CATASTROPHIC: sudden disappearance of attractor
DANGEROUS: sudden jump to new attractor (of any type)
INDETERMINACY: outcome can depend on global topology
HYSTERESIS: path not reinstated on control reversal
BASIN: tends to zero (b), attractor hits edge of residual basin (a, c)
NO INTERMITTENCY: but critical slowing in global events

point, C , where µ=µcrit. Passing vertically though C , and then curving towards increasing µ, is a stable secondary
equilibrium path of deflected states, the so-called post-buckling path. The existence of (stable) equilibrium states
at values of µ> µcrit is why we call the bifurcation a supercritical pitchfork. In contrast, many shell-like elastic
structures exhibit a dangerous bifurcation with an (unstable) post-buckling path that curves towards decreasing
values of the load, µ, and is accordingly called a subcritical pitchfork. These two pitchforks are excellent examples
of safe and dangerous bifurcations, but they do not appear in our lists because they are not co-dimension-1
events in generic systems. That the bifurcation of a column is not co-dimension-1 manifests itself by the fact
that a perfectly straight column is not a typical object; any real column will have small imperfections, lack of
straightness being the most obvious one. These imperfections round off the corners of the intersection of the
primary and secondary paths (in the manner of the contours of a mountain-pass), and destroy the bifurcation in
the manner described by catastrophe theory [Poston & Stewart, 1978; Thompson, 1982]. We shall see a subcritical
pitchfork bifurcation in a schematic diagram of the THC response due to Rahmstorf [2000] in Figure 10. This is
only observed in very simple (non-generic) models and is replaced by a fold in more elaborate ones.

It is because of this lack of typicality of the pitchforks that we have chosen to illustrate the safe and dangerous
bifurcations in Figure 5 by other (co-dimension-1) bifurcations. As a safe event, we show in Figure 5(a) the
supercritical Hopf bifurcation. This has an equilibrium path increasing monotonically withµwhose point attractor
loses its stability at C in an oscillating fashion, throwing off a path of stable limit cycles which grow towards
increasing µ. This occurs, for example, at the onset of vibrations in machining, and triggers the aerodynamic
flutter of fins and ailerons in aircraft. Unlike the pitchfork, this picture is not qualitatively changed by small
perturbations of the system.

As our explosive event, we show in Figure 5(b) the flow explosion involving a saddle-node (fold) on a limit
cycle. Here the primary path of point attractors reaches a vertical tangent, and a large oscillation immediately
ensues. As with the supercritical Hopf, all paths are re-followed on reversing the sweep of the control parameter µ:
there is no hysteresis.

Finally, as our dangerous event in Figure 5(c), we have chosen the simple static fold (otherwise known as a
saddle-node bifurcation), which is actually the most common bifurcation encountered in scientific applications:
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Fig. 5. Schematic illustration of the three bifurcation types. On the left the control parameter, µ, is plotted horizontally and the response,
q , vertically. The middle column shows the time series of a response to small disturbances if µ<µcrit. On the right we show how the system
drifts away from its previously stable steady state if µ>µcrit. The different types of events are (from top to bottom) safe (a), explosive (b)
and dangerous (c).

and we shall be discussing one for the THC in Section 6.1. Such a fold is in fact generated when a perturbation
rounds off the (untypical) subcritical pitchfork, revealing a sharp imperfection sensitivity notorious in the buckling
of thin aero-space shell structures [Thompson & Hunt, 1984]. In the fold, an equilibrium path of stable point
attractors being followed under increasing µ folds smoothly backwards as an unstable path towards decreasing µ
as shown. Approaching the turning point at µcrit there is a gradual loss of attracting strength, with the local decay
rate (LDR) of transient motions (see Section 4) passing directly through zero with progress along the arc-length of
the path. This makes its variation with µ parabolic, but this fine distinction seems to have little significance in the
climate tipping studies of Sections 6–7. Luckily, in these studies, the early decrease of LDR is usually identified long
before any path curvature is apparent. As µ is increased through µcrit the system finds itself with no equilibrium
state nearby, so there is inevitably a fast dynamic jump to a remote attractor of any type. On reversing the control
sweep, the system will stay on this remote attractor, laying one end-foundation for a possible hysteresis cycle.

We see immediately from these bifurcations that it is primarily the dangerous forms that will correspond
to, and underlie, the climate tipping points that concern us here. (Though if, for example, we adopt Lenton’s
relatively relaxed definition of a tipping point based on time-horizons (see Section 5), even a safe bifurcation
might be the underlying trigger.) Understanding the bifurcational aspects will be particularly helpful in a situation
where some quasi-stationary dynamics can be viewed as an equilibrium path of a mainly-deterministic system,
which may nevertheless be stochastically perturbed by noise. We should note that the dangerous bifurcations are
often indeterminate in the sense that the remote attractor to which the system jumps often depends with infinite
sensitivity on the precise manner in which the bifurcation is realized. This arises (quite commonly and typically)
when the bifurcation point is located exactly on a fractal basin boundary [McDonald et al., 1985; Thompson,
1992, 1996]. In a model, repeated runs from slightly varied starting conditions would be needed to explore all the
possible outcomes.

Table 5 lists the precursors of the bifurcations from Tables 2–4 that one would typically use to determine if
a bifurcation is nearby in a (mostly) deterministic system. One imagines the currently observed steady state to
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Table 5. List of all co-dimension-1 bifurcations of continuous dissipative dynamics, with
notes on their precursors. Here S, E and D are used to signify the safe, explosive and
dangerous events respectively. LDR is the local decay rate, measuring how rapidly the
system returns to its steady state after a small perturbation. Being a linear feature, the LDR
of a particular type of bifurcation is not influenced by the sub- or super-critical nature of
the bifurcation.

Precursors of Co-dimension-1 Bifurcations

Supercritical Hopf S: point to cycle LDR→ 0 linearly with control
Supercritical Neimark S: cycle to torus LDR→ 0 linearly with control
Supercritical flip S: cycle to cycle LDR→ 0 linearly with control
Band merging S: chaos to chaos separation decreases linearly

Flow explosion E: point to cycle Path folds. LDR→ 0 linearly along path
Map explosion E: cycle to torus Path folds. LDR→ 0 linearly along path
Intermittency expl: flow E: point to chaos LDR→ 0 linearly with control
Intermittency expl:
map

E: cycle to chaos LDR→ 0 as trigger (fold, flip, Neimark)

Regular interior crisis E: chaos to chaos lingering near impinging saddle cycle
Chaotic interior crisis E: chaos to chaos lingering near impinging chaotic

saddle

Static fold D: from point Path folds. LDR→ 0 linearly along path
Cyclic fold D: from cycle Path folds. LDR→ 0 linearly along path
Subcritical Hopf D: from point LDR → 0 linearly with control
Subcritical Neimark D: from cycle LDR → 0 linearly with control
Subcritical flip D: from cycle LDR → 0 linearly with control
Saddle connection D: from cycle period of cycle tends to infinity
Regular exterior crisis D: from chaos lingering near impinging saddle cycle
Chaotic exterior crisis D: from chaos lingering near impinging accessible

saddle

be perturbed by a small ‘kick’ or sudden noise. Since the steady state is still stable, the system relaxes back to it.
This relaxation decays exponentially proportional to exp(λt ) where t is the time and λ (a negative quantity in this
context) is the critical eigenvalue of the de-stabilizing mode [Thompson & Stewart, 2002]. The local decay rate,
LDR (called κ in Section 4), is the negative of λ.

Defined in this way, a positive LDR tending to zero quantifies the ‘slowing of transients’ as we head towards
an instability. We see that the vast majority (though not all) of the typical events display the useful precursor that
the local decay rate, LDR, vanishes at the bifurcation (although the decay is in some cases oscillatory). Under light
stochastic noise, the variance of the critical mode will correspondingly exhibit a divergence proportional to the
reciprocal of the LDR. The LDR precursor certainly holds, with monotonic decay, for the static fold which is what
we shall be looking at in Section 6.1 in the collapse of the North Atlantic thermohaline circulation. The fact, noted
in Table 5, that close to the bifurcation some LDRs vary linearly with the control, while some vary linearly along
the (folding) path is a fine distinction that may not be useful or observable in climate studies.

The outline of the co-dimension-1 bifurcations that we have just presented applies to dynamical flows which
are generated by continuous systems where time changes smoothly as in the real world, and as in those computer
models that are governed by differential equations. There are closely analogous theories and classifications for the
bifurcations in the dynamics of maps that govern (for example) iterated systems, where time changes in finite
steps. It is these analogous theories that will be needed when dealing with experimental data sets from ice cores,
etc, as we shall show in the following section. Meanwhile the theory for discrete time data, has direct relevance
to the possibility of tipping points in parts of the biosphere where time is often best thought of in generations or
seasons; in some populations, such as insects, one generation disappears before the next is born.

The equivalent concept that we shall need for analysing discrete-time data is as follows. The method used in
our examples from the recent literature (in Section 6 and 7) is to search for an underlying linearized deterministic
map of the form

yn+1 = c yn
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which governs the critical slowing mode of the transients. This equation represents exponential decay when the
eigenvalue of the mapping, c , is less than one, but exponential growth when c is greater than one. So corresponding
to LDR dropping to zero, we shall be expecting c to increase towards unity.

4. Analysis of Time Series near Incipient Bifurcations

Time series of observational data can help to predict incipient bifurcations in two ways. First, climate models, even
if derived from first principles, require initial conditions on a fine mesh and depend on parameters (for example,
the effective re-radiation coefficient from the Earth’s land surface). Both, initial conditions and parameters, are
often not measurable directly but must be extracted indirectly by fitting the output of models to training data.
This process is called data assimilation. The alternative is to skip the modelling step and search for precursors of
incipient dangerous bifurcations directly in a monitored time series. A typical example of an observational time
series is shown (later) in the upper part of Figure 13. The time series clearly shows an abrupt transition at about 34
million years before the present (BP). One of the aims of time-series analysis would be to predict this transition
(and, ideally, its time) from features of the time series prior to the transition. In this example one assumes that
the system is in an equilibrium-like state which then disappears in a static fold, 34 million years BP. According to
Table 5 the LDR tends to zero as we approach such a bifurcation.

A decreasing LDR corresponds to a slowing down of small-scale features in the time series which one can
expect to be visible in many different ways. If it is possible to apply small pulse-like disturbances (or one knows that
this type of disturbance has been present during the recording) the LDR is observable directly as the recovery rate
from this disturbance (this was suggested for ecological systems by van Nes & Scheffer [2007]). However, natural
disturbances that are typically present are noise-induced fluctuations around the equilibrium. The noise that we
have in mind might come from outside the system, or might be high frequency oscillations within the system
which effectively act as noise on the larger and slower fundamental motions. From either source, these noisy
fluctuations on short time-scales can be used to extract information about a decrease of the LDR. For example,
the power spectrum of the noisy time-series shifts toward lower frequencies. This reddening of the spectrum was
analysed and tested by Kleinen et al. [2003] as an indicator of a decrease of the LDR using the box models by
Stommel [1961], and by Biggs et al. [2009] in a fisheries model. Carpenter & Brock [2006] find that a decreasing
LDR causes an increasing variance of the stationary temporal distributions in their study of stochastic ecological
models. Also in studies of ecological models, Guttal & Jayaprakash [2008a,b] find that increasing higher-order
moments (such as skewness) of the temporal distribution can be a reliable early warning signal for a regime shift,
as well as increasing higher-order moments of spatial distributions. Making the step from temporal to spatial
distributions is of interest because advancing technology may be able to increase the accuracy of measured spatial
distributions more than measurements of temporal distributions (which require data from the past).

4.1. Auto-regressive modelling and de-trended fluctuation analysis

Held & Kleinen [2004] use the noise-induced fluctuations on the short-time scale to extract information about
the LDR using auto-regressive (AR) modelling. See Box & Jenkins [1994] for a text book on statistical forecasting.
In order to apply AR modelling to unevenly spaced, drifting data from geological records, Dakos et al. [2008]
interpolated and de-trended the time series. We outline the procedure of Dakos et al. [2008] in more detail for the
example of a single-valued time series that is assumed to follow a slowly drifting equilibrium of a deterministic,
dissipative dynamical system disturbed by noise-induced fluctuations.

(1) Interpolation If the time spacing between measurements is not equidistant (which is typical for geological
time series) then one interpolates (for example, linearly) to obtain a time series on an equidistant mesh of time
steps ∆t . The following steps assume that the time step ∆t satisfies 1/κÀ∆t À 1/κi where κ is the LDR of the
time series and κi are the decay rates of other, non-critical, modes. For example, Held & Kleinen [2004] found
that ∆t = 50 years fits roughly into this interval for their tests on simulations (see Figure 11). The result of the
interpolation is a time series xn of values approximating measurements on a mesh tn with time steps ∆t .

(2) Detrending To remove the slow drift of the equilibrium one finds and subtracts the slowly moving average of
the time series xn . One possible choice is the average X (tn) of the time series xn taken for a Gaussian kernel of
a certain bandwidth d . The result of this step is a time series yn = xn −X (tn) which fluctuates around zero as a
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stationary time series. Notice that X (tn) is the smoothed curve in the upper part of Figure 13.
(3) Fit LDR in moving window One assumes that the remaining time series, yn , can be modelled approximately

by a stable scalar linear mapping, the so-called AR(1) model, disturbed by noise

yn+1 = c yn +σηn

where σηn is the instance of a random error at time tn and c (the mapping eigenvalue, sometimes called
the propagator) is the correlation between successive elements of the time series yn . In places we follow
other authors by calling c the first-order autoregressive coefficient, written as ARC(1). We note that under our
assumptions c is related to the LDR, κ, via c = exp(κ∆t). If one assumes that the propagator, c, drifts slowly
and that the random error, σηn , is independent and identically distributed (i.i.d.) sampled from a normal
distribution then one can obtain the optimal approximation of the propagator c by an ordinary least-squares-
fit of yn+1 = c yn over a moving time-window [tm−k . . . tm+k ]. Here the window length is 2k, and the estimation
of c will be repeated as the center of the window, given by m, moves through the field of data, as illustrated in
Figure 6. The solution cm of this least-squares fit is an approximation of c(tm) = exp(κ(tm)∆t ) and, thus, gives
also an approximation of the LDR, κ(tm), at the middle of the window. The evolution of the propagator c is
shown in the bottom of Figures 11–14. Finally, if one wants to make a prediction about the time t f at which
the static fold occurs one has to extrapolate a fit of the propagator time series c(tm) to find the time t f such
that c(t f ) = 1.

Propagator, C

C(t18)

C(t16)
C(t17)

Sliding Window in Time-Series Analysis

x12 x13 x14 x15 x16 x17 x18 x19 x20

Last Window

Predicted
Instability

1.0

t16 t17 t18

Time, t

Last data point:
either at paleo-tipping in trial
or today for future prediction

N = 20,
w = 5

Fig. 6. Illustration of the sliding window of length 2k moving along the time series and reaching the last data point.

The AR(1) model is only suitable to find out whether the equilibrium approaches a bifurcation or not. It is not
able to distinguish between possible types of bifurcation as listed in Table 5. Higher order AR models can be
re-constructed. For the data presented by Dakos et al. [2008] these higher-order AR models confirm that, first, the
first-order coefficient really is dominant, and, second, that this coefficient is increasing before the transition.

Livina & Lenton [2007] modified step 3 of the AR(1) approach of Held & Kleinen [2004], aiming to find
estimates also for shorter time series with a long range memory using detrended fluctuation analysis (DFA;
originally developed by Peng et al. [1994] to detect long-range correlation in DNA sequences). For DFA one
determines the variance V (k) of the cumulated sum of the de-trended time series yn over windows of size k and
fits the relation between V (k) and k to a power law: V (k) ∼ kα. The exponent α approaches 3/2 when the LDR
of the underlying deterministic system decreases to zero. The method of Livina & Lenton [2007] was tested for
simulations of the GENIE-1 model and on real data for the Greenland ice-core paleo-temperature (GISP2) data
spanning the time from 50,000 years ago to the present. Extracting bifurcational precursors such as the ARC(1)
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propagator from the GISP2 data is particularly challenging because the data set is comparatively small (1586
points) and unevenly spaced. Nevertheless, the propagator estimate extracted via Livina and Lenton’s detrended
fluctuation analysis shows not only an increase but its intersection with unity would have predicted the rapid
transition at the end of the Younger Dryas accurately. See [Lenton et al., 2009] for further discussion of the GENIE
simulations.

Both methods, AR analysis and DFA analysis, can in principle be used for predictions of tipping induced by
a static fold that are nearly independent of the methods and the (arbitrary) parameters used. When testing the
accuracy of predictions on model-generated or real data one should note the following two points.

First, assign the ARC(1) estimate to the time in the middle of the moving time window for which it has been
fitted. Dakos et al. [2008] have shifted the time argument of their ARC(1) estimate to the end point of the fitting
interval because they were not concerned with accurate prediction (see Section 4.2).

Second, use only those parts of the time series c(t) that were derived from data prior to the onset of the
transition. We can illustrate this using Figure 4. The time interval between adjacent data points used by Livina &
Lenton [2007] and shown in Figure 4(a) is not a constant. The length of the sliding window in which the DFA1
propagator is repeatedly estimated is likewise variable. However, we show in Figure 4(b) a typical length of the
window, drawn as if the right-hand leading edge of the window had just reached the tipping point. For this notional
window, the DFA1 result would be plotted in the center of the window at point A. Since in a real prediction scenario
we cannot have the right-hand leading edge of the window passing the tipping point, the DFA1 graph must be
imagined to terminate at A. Although when working with historical or simulation data it is possible to allow the
leading edge to pass the tipping point (as Livina and Lenton have done) the results after A become increasingly
erroneous from a prediction point of view because the desired results for the pre-tipping DFA1 are increasingly
contaminated by the spurious and irrelevant behaviour of the temperature graph after the tip.

Finally, we note that the disturbancesσηn do not have to be i.i.d. random variables. The underlying local decay
rate causes a correlation between subsequent measurements for any disturbance without autocorrelation. In this
sense the random noise assumed to be present in the AR(1) model is merely a representative for disturbances that
are present in the climate system. In fact, the precise assumption underlying the AR(1) analysis is the presence of
three well separated time scales. One time scale, on which small fluctuations of the complex climate system occur
(these fluctuations are represented by the noise), is fast. The second time scale, on which disturbances decay, is
intermediate (this characteristic time corresponds to the inverse of the LDR away from the bifurcation point).
Finally, the time scale on which the bifurcation parameter drifts is comparatively slow.

4.2. Comments on predictive power

Ultimately, methods based on AR modelling have been designed to achieve quantitative predictions, giving an
estimate of when tipping occurs with a certain confidence interval (similar to Figure 11). We note, however, that
Dakos et al. [2008], which is the most systematic study applying this analysis to geological data, make a much
more modest claim: the propagator c(t ) (and, hence, the estimated LDR) shows a statistically significant increase
prior to each of the eight tipping events they investigated (listed in the introduction). Dakos et al. [2008] applied
statistical rank tests to the propagator c(tn) to establish statistical significance. In the procedures of Section 4.1
one has to choose a number of method parameters that are restricted by a-priori unknown quantities, for example,
the step size ∆t for interpolation, the kernel bandwidth d , and the window length, 2k. A substantial part of the
analysis in Dakos et al. [2008] consisted of checking that the observed increase of c is largely independent of the
choice of these parameters, thus, demonstrating that the increase of c is not an artefact of their method.

The predictions one would make from the ARC(1) time series, c(t), are, however, not as robust on the
quantitative level (this will be discussed for two examples of Dakos et al. [2008] in Section 7). For example,
changing the window length 2k or the kernel bandwidth d shifts the time series of the estimated propagator
horizontally and vertically: even a shift by ten percent corresponds to a shift for the estimated tipping by possibly
thousands of years. Also the interpolation step size ∆t (interpolation is necessary due to the unevenly spaced
records and the inherently non-discrete nature of the time series) may cause spurious auto-correlation.

Another difficulty arises from an additional assumption one has to make for accurate prediction: the underly-
ing control parameter is drifting (nearly) linearly in time during the recorded time series. Even this assumption is
not sufficient. A dynamical system can nearly reach the tipping point under gradual variation (say, increase) of a
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control parameter but turn back on its own if the parameter is increased further. The only definite conclusion one
can draw from a decrease of the LDR to a small value is that generically there should exist a perturbation that leads
to tipping. For a recorded time series this perturbation may simply not have happened. The term “generic” means
that certain second-order terms in the underlying nonlinear deterministic system should have a substantially
larger modulus than the vanishing LDR [Thompson & Stewart, 2002]. This effect may lead to false positives when
testing predictions using past data even if the AR models are perfectly accurate and the assumptions behind them
are satisfied.
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Fig. 7. Estimated probability for early escape from the stable node based on the AR(1) analysis of the ice-core record from the end of
the last glaciation [Petit et al., 1999]. Figure (a) shows the original time series, (b) the estimated local decay rate per time step, κ, the
corresponding equilibrium positions for the saddle-node normal form, and the interpolation estimate for the critical time tfold. The inset
in (b) shows the probability distribution for escape. Figure (c) shows the estimate for the non-dimensionalized noise-level.

Another problem affecting the quantitative accuracy of predictions is the possibility of noise-induced escape
from the basin of attraction before the tipping point is reached. This leads to a systematic bias of a prediction that
extrapolates the AR(1) propagator to estimate the time at which it reaches unity. The probability of early escape
can be expressed in terms of the relation between noise level and drift speed of the bifurcation parameter. Figure 7
shows a quantitative estimate of this effect as studied by Thompson & Sieber [2011]. The original time series in
Figure 7(a) is an ice-core record of the end of the last glaciation from Petit et al. [1999], which is part of the study by
Dakos et al. [2008]. Figure 7(b) shows the local decay rate κ, as extracted by AR(1) analysis. If one assumes that the
underlying deterministic system has a control parameter that approaches its critical value for a saddle-node with
linear speed one can extract the saddle-node normal form parameters using the estimate for κ. For example, in
the normal form the position of the node would be at κ/2, and the position of the saddle equilibrium would be at
−κ/2, as shown in Figure 7(b). Interpolation between saddles and nodes gives an estimate for the critical time tfold.
An order-of-magnitude estimate of the (non-dimensionalized) noise level σ, shown in Figure 7(c), then allows
an estimate of the probability distribution for escape over time (see [Thompson & Sieber, 2011] for details). This
distribution is shown as a small inset in Figure 7(b), and it clearly shows that early escape plays a role whenever
the noise level is large compared to the drift speed of the control parameter.

The effects listed above all conspire to restrict the level of certainty that can be gained from predictions based
on time series. Note, though, that from a geo-engineering point of view [Launder & Thompson, 2010], these
difficulties may be of minor relevance because establishing a decrease of the LDR is of the greatest interest in its
own right. After all, the LDR is the primary direct indicator of sensitivity of the climate to perturbations (such as
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geo-engineering measures).

5. Lenton’s Tipping Elements

Work at the beginning of this century which set out to define and examine climate tipping [Rahmstorf, 2001;
Lockwood, 2001; National Research Council, 2002; Alley et al., 2003; Rial et al., 2004] focused on abrupt climate
change: namely when the Earth system is forced to cross some threshold, triggering a transition to a new state at a
rate determined by the climate system itself and faster than the cause, with some degree of irreversibility. As we
noted in Section 3, this makes the tipping points essentially identical to the dangerous bifurcations of nonlinear
dynamics.

As well as tipping points, the concept has arisen of tipping elements, these being well-defined subsystems
of the climate which work (or can be assumed to work) fairly independently, and are prone to sudden change.
In modelling them, their interactions with the rest of the climate system are typically expressed as a forcing that
varies slowly over time.

Recently, Lenton et al. [2008] have made a critical evaluation of policy-relevant tipping elements in the
climate system that are particularly vulnerable to human activities. To do this they built on the discussions and
conclusions of a recent international workshop entitled “Tipping Points in the Earth System” held at the British
Embassy, Berlin, which brought together 36 experts in the field. Additionally they conducted an expert elicitation
from 52 members of the international scientific community to rank the sensitivity of these elements to global
warming.

In their work, they use the term tipping element to describe a subsystem of the Earth system that is at least
sub-continental in scale, and can be switched into a qualitatively different state by small perturbations. Their
definition is in some ways broader than that of some other workers because they wish to embrace the following:
non-climatic variables; cases where the transition is actually slower than the anthropogenic forcing causing it;
cases where a slight change in control may have a qualitative impact in the future without however any abrupt
change. To produce their short list of key climatic tipping elements, summarized in Table 1 (in the introduction)
and below, Lenton et al. [2008] considered carefully to what extent they satisfied the following four conditions
guaranteeing their relevance to international decision-making meetings such as Copenhagen [2009], the daughter
of Kyoto.

Condition 1

There is an adequate theoretical basis (or past evidence of threshold behaviour) to show that there are parameters
controlling the system that can be combined into a single control µ for which there exists a critical control value
µcrit. Exceeding this critical value leads to a qualitative change in a crucial system feature after prescribed times.

Condition 2

Human activities are interfering with the system such that decisions taken within an appropriate political time
horizon can determine whether the critical value for the control, µcrit, is reached.

Condition 3

The time to observe a qualitative change plus the time to trigger it lie within an ethical time horizon which
recognizes that events too far away in the future may not have the power to influence todayâĂŹs decisions.

Condition 4

A significant number of people care about the expected outcome. This may be because (i) it affects significantly
the overall mode of operation of the Earth system, such that the tipping would modify the qualitative state of
the whole system, or (ii) it would deeply affect human welfare, such that the tipping would have impacts on
many people, or (iii) it would seriously affect a unique feature of the biosphere. In a personal communication,
Tim Lenton kindly summarized his latest views as to which of these are likely to be governed by an underlying
bifurcation. They are listed in the headings as follows.
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1. Arctic summer sea-ice: possible bifurcation

If the area covered by ice decreases, less solar energy (insolation) is reflected, resulting in increasing temperature
and, thus, a further decrease in ice coverage. So area coverage has a strong positive feedback, and may exhibit
bi-stability with perhaps multiple states for ice thickness. The instability is not expected to be relevant to Southern
Ocean sea-ice because the Antarctic continent covers the region over which it would be expected to arise [Morales
Maqueda et al., 1998]. Some researchers think a summer ice-loss threshold, if not already passed, may be very
close and a transition could occur well within this century. However Lindsay & Zhang [2005] are not so confident
about a threshold, and Eisenman & Wettlaufer [2009] argue that there is probably no bifurcation for the loss of
seasonal (summer) sea-ice cover: but there may be one for the year-round loss of ice cover. See also [Winton,
2006]. The decline of the summer sea ice is illustrated in Figure 8.
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Fig. 8. Decline in the Arctic summer sea ice since 1979. The monthly July average is plotted for each year. The sea ice extent (blue) is
derived from satellite images measuring the extent of ocean covered by sea ice at any concentration greater than 15%. As the satellite
images do not capture the region around the North pole this region is assumed to be covered in this data. The trend, a decrease of 3.2% per
decade, is shown by a dark green line, together with its 95% confidence interval (yellow region, centered at the middle of the time period.
Source is Fetterer et al. [2002].

2. Greenland ice sheet: bifurcation

Ice-sheet models generally exhibit multiple stable states with nonlinear transitions between them [Saltzman,
2002], and this is reinforced by paleo-data. If a threshold is passed, the IPCC [2007] predicts a timescale of greater
than 1,000 years for a collapse of the sheet. However, given the uncertainties in modelling a lower limit of 300
years is conceivable [Hansen, 2005].

3. West Antarctic ice sheet: possible bifurcation

Most of the West Antarctic ice sheet (WAIS) is grounded below sea level and could collapse if a retreat of the
grounding-line (between the ice sheet and the ice shelf) triggers a strong positive feedback. The ice sheet has been
prone to collapse, and models show internal instability. There are occasional major losses of ice in the so-called
Heinrich events. Although the IPCC [2007] has not quoted a threshold, Lenton estimates a range that is accessible
this century. Note that a rapid sea-level rise (of greater than one metre per century) is more likely to come from
the WAIS than from the Greenland ice sheet.

4. Atlantic thermohaline circulation: fold bifurcation

A shutoff in Atlantic thermohaline circulation can occur if sufficient freshwater enters in the North to halt the
density-driven North Atlantic Deep Water formation. Such THC changes played an important part in rapid climate
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changes recorded in Greenland during the last glacial cycle [Rahmstorf, 2002]: see Section 7 for predictive studies
of the Younger Dryas tipping event. As described in Section 6.1, a multitude of mathematical models, backed
up by past data, show the THC to exhibit bi-stability and hysteresis with a fold bifurcation (see Figure 10 and
discussion in Section 6.1). Since the THC helps to drive the Gulf Stream, a shut-down would significantly affect
the climate of the British Isles.

5. El Niño Southern Oscillation: some possibility of bifurcation

The El Niño Southern Oscillation (ENSO) is the most significant ocean-atmosphere mode of climate variability,
and it is susceptible to three main factors: the zonal mean thermocline depth, the thermocline sharpness in the
eastern equatorial Pacific (EEP), and the strength of the annual cycle and hence the meridional temperature
gradient across the equator [Guilyardi, 2006]. So increased ocean heat uptake could cause a shift from present day
ENSO variability to greater amplitude and/or more frequent El Niños [Timmermann et al., 1999]. Recorded data
suggests switching between different (self-sustaining) oscillatory regimes: however, it could be just noise-driven
behaviour, with an underlying damped oscillation.

6. Indian summer monsoon: possible bifurcation

The Indian Summer Monsoon (ISM) is driven by a land-to-ocean pressure gradient, which is itself reinforced
by the moisture that the monsoon carries from the adjacent Indian Ocean. This moisture-advection feedback is
described by Zickfeld et al. [2005]. Simple models of the monsoon give bi-stability and fold bifurcations, with the
monsoon switching from ‘on’ and ‘off’ states. Some data also suggest more complexity, with switches between
different chaotic oscillations.

7. Sahara/Sahel and West African monsoon: possible bifurcation

The monsoon shows jumps of rainfall location even from season to season. Such jumps alter the local atmospheric
circulation, suggesting multiple stable states. Indeed past greening of the Sahara occurred in the mid-Holocene
and may have occurred rapidly in the earlier Bølling-Alleröd warming. Work by de Menocal et al. [2000] suggests
that the collapse of vegetation in the Sahara about 5,000 years ago occurred more rapidly than could be attributed
to changes in the Earth’s orbital features. A sudden increase in green desert vegetation would of course be a
welcome feature for the local population, but might have unforeseen knock-on effects elsewhere.

8. Amazon rainforest: possible bifurcation

In the Amazon basin, a large fraction of the rainfall evaporates causing further rainfall, and for this reason
simulations of Amazon deforestation typically generate about 20-30% reductions in precipitation [Zeng et al.,
1996], a lengthening of the dry season, and increases in summer temperatures [Kleidon & Heimann, 2000]. The
result is that it would be difficult for the forest to re-establish itself, suggesting that the system may exhibit
bi-stability.

9. Boreal forest: probably not a bifurcation

The Northern or Boreal forest system exhibits a complex interplay between tree physiology, permafrost, and
fire. Climate change could lead to large-scale dieback of these forests, with transitions to open woodlands or
grasslands [Lucht et al., 2006; Joos et al., 2001]. Based on limited evidence, the reduction of the tree fraction may
have characteristics more like a quasi-static transition than a real bifurcation.

6. Predictions of Tipping Points in Models

6.1. Shutdown of the Thermohaline Circulation (THC)

We choose to look, first, at the thermohaline circulation because it has been thoroughly examined over many
years in computer simulations, and its bifurcational structure is quite well understood.
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Fig. 9. The thermohaline circulation (THC), often called the global conveyor, is the major oceanic current of the Earth. It includes warm
surface currents, which sink in the polar regions to become cold and saline deep currents as shown. Figure reproduced courtesy of the
World Meteorological Office (WMO).

The remarkable global extent of the THC is illustrated in Figure 9. In the Atlantic it is closely related to,
and helps to drive, the North Atlantic Current (including the Drift), and the Gulf Stream: so its variation could
significantly affect the climate of the British Isles and Europe. It exhibits multi-stability and can switch abruptly
in response to gradual changes in forcing which might arise from global warming. Its underlying dynamics are
summarized schematically in Figure 10 adapted from the paper by Rahmstorf et al. [2005], which itself drew on
the classic paper of Stommel [1961]. This shows the response, represented by the overturning strength of the
circulation (q), versus the forcing control, represented by the fresh water flux (from rivers, glaciers, etc) into the
North Atlantic, (µ). The suggestion is that anthropogenic (man-induced) global warming may shift this control
parameter, µ, past the fold bifurcation at a critical value of µ=µcrit (= 0.2 in this highly schematic diagram). The
hope is that by tuning a climate model to available climatological data we could determine µcrit from that model,
thereby throwing some light on the possible tipping of the real climate element.

The question of where the tipping appears in models has been addressed in a series of papers by Dijkstra
& Weijer [2003, 2005], Dijkstra et al. [2004], and Huisman et al. [2009] using a hierarchy of models of increasing
complexity. The simplest model is a box model consisting of two connected boxes of different temperatures and
salinity representing the North Atlantic at low and high latitudes. For this box model it is known that two stable
equilibria coexist for a large range of freshwater-forcing. The upper end of the model hierarchy is a full global
ocean circulation model.

Using this high-end model, Dijkstra & Weijer [2005] applied techniques of numerical bifurcation analysis
to delineate two branches of stable steady-state solutions. One of these had a strong northern overturning in
the Atlantic while the other had hardly any northern overturning, confirming qualitatively the sketch shown in
Figure 10. Finally, Huisman et al. [2009] have discovered four different flow regimes of their computer model.
These they call the Conveyor (C), the Southern Sinking (SS), the Northern Sinking (NS) and the Inverse Conveyor
(IC), which appear as two disconnected branches of solutions, where the C is connected with the SS and the
NS with the IC. The authors argue that these findings show, significantly, that the parameter volume for which
multiple steady states exist is greatly increased.

An intuitive physical mechanism for bi-stability is the presence of two potential wells (at the bottom of
each is a stable equilibrium) separated by a saddle, which corresponds to the unstable equilibrium. Applying a
perturbation then corresponds to a temporary alteration of this potential energy landscape. Dijkstra et al. [2004]
observed that this picture is approximately true for ocean circulation if one takes the average deviation of water
density (as determined by salinity and temperature) from the original equilibrium as the potential energy. They
showed, first for a box model and then for a global ocean circulation model, that the potential energy landscape of
the unperturbed system defines the basins of attraction fairly accurately. This helps engineers and forecasters to
determine whether a perturbation (for example, increased freshwater influx) enables the bi-stable system to cross
from one basin of attraction to the other.
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Concerning the simple box models of the THC, we might note their similarity to the atmospheric convection
model in which Lorenz [1963] discovered the chaotic attractor: this points to the fact that we must expect chaotic
features in the THC and other climate models. See [Dijkstra, 2008] for a summary of the current state of ocean
modelling from a dynamical systems point of view, and, for example, [Tziperman et al., 1994; Tziperman, 1997] for
how predictions of ocean models connect to full global circulation models. Building on these modelling efforts,
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ongoing research is actively trying to predict an imminent collapse at the main fold seen in the models (for
example, Figure 10) from bifurcational precursors in time series. Held & Kleinen [2004] use the local decay rate
(LDR; described earlier in Section 4 and in Table 5) as the diagnostic variable that they think is most directly
linked to the distance from a bifurcation threshold. They demonstrate its use to predict the shutdown of the
North Atlantic thermohaline circulation using the oceanic output of CLIMBER2, a predictive coupled model of
intermediate complexity [Petoukhov et al., 2000]. They make a 50,000 years transient run with a linear increase
in atmospheric CO2 from 280 to 800 parts per million (ppm), which generates within the model an increase in
the fresh water forcing which is perturbed stochastically. This run results in the eventual collapse of the THC as
shown in Figure 11.
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c =ARC(1), shown in (b), or its linear fit, reaches +1.
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In Figure 11(a) the graph (corresponding approximately to the schematic diagram of Figure 10) is fairly linear
over much of the timescale: there is no adequate early prediction of the fold bifurcation in terms of path curvature.
The graph of Figure 11(b) shows the variation of the first-order autoregressive coefficient or propagator, ARC(1)
which is described in Section 4. Unlike the response diagram of q(t ), the time-series of ARC(1), although noisy,
allows a fairly good prediction of the imminent collapse using the linear fit drawn: the fairly steady rise of ARC(1)
towards its critical value of +1 is indeed seen over a very considerable time scale. Notice that the linear fit is
surrounded by a 95% zone, giving probability bounds to the collapse time. These bounds emphasize that much
more precise predictions will be needed before they can be used to guide policy on, for example, whether to
implement geo-engineering proposals.

6.2. Global Glaciation and Desertification of Africa

Along side their extensive studies of past climatic events using real paleo-data, Dakos et al. [2008] also made
some model studies as illustrated in Figure 12. For these, and subsequent figures, the number of data points, N , is
quoted in the captions.
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In pictures of this type it is worth observing that there seems to be no agreed way of plotting the estimated
auto-correlation coefficient. Held & Kleinen [2004] and Livina & Lenton [2007] plot ARC(1) at the center of the
moving window in which it has been determined. Meanwhile Dakos et al. [2008] plot ARC(1) at the final point of
this window. Here, we have redrawn the results from the latter article by shifted the ARC(1) back by half the length
of the sliding window, bringing the graphs into the format of Held & Kleinen [2004] and Livina & Lenton [2007].
This is important whenever the intention is to make a forward extrapolation to a target, as we are doing here (see
Section 4.1). This forward extrapolation can be made by any appropriate method. In fact, approaching (close to)
an underlying fold bifurcation, ARC(1) will vary linearly along the solution path, but parabolically with the control
parameter: this parabolic effect will only be relevant if the upper solution path is already curving appreciably,
which is not the case in most of the present examples displayed here.
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7. Predictions of Ancient Tippings

We have already presented the results of Livina & Lenton [2007] on the ending of the last glaciation (related to the
Younger Dryas event) using Greenland ice-core data in Figure 4 of Section 1. Here we turn to Dakos et al. [2008]
who present a systematic analysis of eight ancient climate transitions. They show that prior to all eight of these
transitions the ARC(1) propagator c extracted from the time series of observations (as described in Section 4)
shows a statistically significant increase, thus, providing evidence that these ancient transitions indeed correspond
to fold-like tipping events. We show in the following subsections the results of Dakos et al. [2008] for two of these
events (leaving out the statistical tests).

7.1. The Greenhouse to Icehouse Tipping

We show first in Figure 13 their study of the greenhouse-icehouse tipping event that happened about 34 million
years ago. The time series in Figure 13(a) is the data, namely the calcium carbonate (CaCO3) content from tropical
Pacific sediment cores. The smooth central line is the Gaussian kernel function used to filter out slow trends.
The graph in Figure 13(b) shows the two plots of ARC(1) that are described in Section 6.2, and we notice that the
mid-window projection is very close to the target, namely the known tipping point from the paleo-data.
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Fig. 13. The ancient greenhouse to icehouse tipping with N = 482 data points. This is one of the best correlations obtained by Dakos
et al. [2008] in their work on eight recorded tipping points. Here the sediments containing CaCO3 were laid down 30–40 million years ago.
Re-drawn from Dakos et al. [2008], as described in the text.

7.2. End of the Younger Dryas Event

To put things in perspective, Figure 14 shows a less-well correlated example from the Dakos paper, this one for the
end of the Younger Dryas event using the grayscale from the Cariaco basin sediments in Venezuela. This Younger
Dryas event [Houghton, 2004] was a curious cooling just as the Earth was warming up after the last ice age, as is
clearly visible, for example, in records of the oxygen isotope δ18O in Greenland ice. It ended in a dramatic tipping
point, about 11,500 yrs ago, when the Arctic warmed by 7◦C in 50 years. Its behaviour is thought to be linked to
changes in the thermohaline circulation. As we have seen, this ‘conveyor belt’ is driven by the sinking of cold salty
water in the North and can be stopped if too much fresh-melt makes the water less salty, and so less dense. At
the end of the ice age when the ice-sheet over North America began to melt, the water first drained down the
Mississippi basin into the Gulf of Mexico. Then, suddenly, it cut a new channel near the St Lawrence river to the
North Atlantic. This sudden influx of fresh water cut off part of the ocean ‘conveyor belt’, the warm Atlantic water
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stopped flowing North, and the Younger Dryas cooling was started. It was the re-start of the circulation that could
have ended the Younger Dryas at its rapid tipping point, propelling the Earth into the warmer Pre-Boreal era.

We might note, here, that the sudden cutting of a new water channel, switching off the THC at the main
fold of Figure 10, may lie outside the scope of any prediction based on a preceding time series. This would be
especially true if the rush of water was, relatively speaking, very sudden and fast so that the control parameter
(fresh water forcing) was quickly ramped past the main fold. So predicting the onset of the Younger Dryas might
not be possible. Meanwhile, let us assume that the ending of the Younger Dryas was intimately associated with the
switch-on of the THC close to the sub-critical bifurcation of Figure 10. Now, we might suppose that the control
parameter were moving fairly slowly backwards towards the underlying sub-critical bifurcation, making prediction
more feasible. However, thinking physically about the processes involved, one could easily imagine that for a good
precursor one would need a time series, not of a temperature, but of an oceanic flow rate.

In Figure 14(b), we see that the (mid-window) plot of the propagator ARC(1) gives a fairly inadequate predic-
tion of the tipping despite its statistically significant increase. A possible cause for this discrepancy might be the
violation of the central assumption underlying the extraction of ARC(1): before tipping the system is supposed to
follow a slowly drifting equilibrium disturbed by noise-induced fluctuations. Note that the ARC(1) being close to
its critical value +1 does not necessarily mean that the underlying deterministic system is close to a bifurcation,
and that due to the detrending procedure the fitted ARC(1) will always be slightly less than +1.
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Fig. 14. A second illustration taken from Dakos et al. [2008] for the end of the Younger Dryas event using the grayscale from basin
sediment in Cariaco, Venezuela. The whole of the above ARC(1) graph fits in the red circle of Figure 4.

We might note finally that a very recent paper on the Younger Dryas event by Bakke et al. [2009] presents
high-resolution records from two sediment cores obtained from Lake Kråkenes in western Norway and the Nordic
seas. Multiple proxies from the former show signs of rapid alternations between glacial growth and melting.
Simultaneously, sea temperature and salinity show an alternation related to the ice cover and the inflow of warm,
salty North Atlantic waters. The suggestion is that there was a rapid flipping between two states before the fast tip
at the end of Younger Dryas which created the permanent transition to an interglacial state. This strengthens the
suspicion that the deterministic component of the dynamics behind the time series in Figure 14(a) is not near a
slowly drifting equilibrium. It will be interesting to see if any useful time-series analyses can be made of this rapid
fluttering action.

8. Concluding Remarks

Our illustrations give a snapshot of very recent research showing the current status of predictive studies. They
show that tipping events, corresponding mathematically to dangerous bifurcations, pose a likely threat to the



February 7, 2011 13:23 Thompson2010

24 J.M.T. Thompson, J. Sieber

current state of the climate because they cause rapid and irreversible transitions. Also, there is evidence that
tipping events have been the mechanism behind climate transitions of the past. Model studies give hope that
these tipping events are predictable using time series analysis: when applied to real geological data from past
events prediction is often remarkably good but is not always reliable. With today’s and tomorrow’s vastly improved
monitoring, giving times-series that are both longer (higher N ) and much more accurate, reliable estimates can be
confidently expected. However, if a system has already passed a bifurcation point it may be too late to do anything
useful, because an irreversible transition might be already underway.

Techniques from nonlinear dynamical systems enter the modelling side of climate prediction at two points.
First, in data assimilation, which plays a role in the tuning and updating of models, the assimilated data is often
Lagrangian (for example, it might come from drifting floats in the ocean). It turns out that optimal starting
positions for these drifters are determined by stable and unstable manifolds of the vector field of the phase-space
flow [Kuznetsov et al., 2003]. Second, numerical bifurcation-tracking techniques for large-scale systems have
become applicable to realistic large-scale climate models [Huisman et al., 2009]. More generally, numerical
continuation methods have been developed (for example, LOCA by Salinger et al. [2002]) that are specifically
designed for the continuation of equilibria of large physical systems. These general methods appear to be very
promising for the analysis of tipping points in different types of deterministic climate models. These developments
will permit efficient parameter studies where one can determine directly how the tipping event in the model varies
when many system parameters are changed simultaneously. This may become particularly useful for extensive
scenario studies in geo-engineering. For example, Dijkstra et al. [2004] demonstrated how bifurcation diagrams
can help to determine which perturbations enable threshold-crossing in the bi-stable THC system, and Biggs
et al. [2009] studied how quickly perturbations have to be reversed to avoid jumping to co-existing attractors in a
fisheries model.

Furthermore, subtle microscopic nonlinearities, currently beyond the reach of climate models, may have a
strong influence on the large spatial scale. For example, Golden [2009] observes that the permeability of sea ice to
brine drainage changes drastically (from impermeable to permeable) when the brine volume fraction increases
across the five percent mark. This microscopic tipping point may have a large-scale follow-on effect on the salinity
of sea water near the arctic, and thus, the THC. Incorporating microscopic nonlinearities into the macroscopic
picture is a challenge for future modelling efforts.

Concerning the techniques of time-series analysis, two developments in related fields are of interest. First,
theoretical physicists are actively developing methods of time-series analysis that take into account unknown
nonlinearities, allowing for short term predictions even if the underlying deterministic system is chaotic [Kantz
& Schreiber, 2003]. These methods permit, to a certain extent, the separation of the deterministic, chaotic,
component of the time series from the noise (see also [Takens, 1981]). As several of the tipping events listed in
Table 1 involve chaos, nonlinear time series analysis is a promising complement to the classical linear analysis.

Second, much can perhaps be learned from current predictive studies in the related field of theoretical
ecology, discussing how higher-order moments of the noise-induced distributions help to detect tipping points.
See Section 4 for a brief description and [Biggs et al., 2009] for a recent comparison between indicators in a
fisheries model.
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