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Outline

É DDE-Biftool approach to distributed delays
and renewal equations

É Convergence analysis problems for DDEs

É Convergence of discretization & Newton iteration



Distributed delays

Linear DDEs: Representation Theorem ensures r.h.s. has
form

′(t) =
∑

Aj(t − τj) +
∫ τmx

0
G(s)(t − s)ds

Nonlinear DDEs:

′(t) = ƒ

�

(t − τj),
∫ s2

s1
g(s, (t − s), p)ds, . . .

�

?

No interface for general nonlinear functional of t = (t + (·))



DDE-Biftool

bifurcation analysis for DDEs, [alternative: knut (Szalai)]

M′(t) = ƒ ((t), (t − τ1), . . . , (t − τm), p),

É originally developed by Engelborghs, Roose, Luzyanina,
Samaey (1999, KU Leuven)

É equilibria: tracking, stability, bifurcation tracking (KUL)
periodic orbits: tracking, stability (KUL)
connecting orbits (KUL)

É periodic orbits local bifurcation tracking (Orosz⇒JS)

É linear stability pseudospectral methods (Breda⇒JS)

É equilibrium normal form analysis
(Wage, Bosschaert, Kuznetsov)

É singular M, neutral DDEs
(Szalai, Barton, Terrien, Hessel, Javaloyes, Gurevich. . . )

É distributed delays (Humphries⇒JS)



DDE-Biftool
uses formulation as differential-algebraic problem:

É permits multiple nested integrals as ℓ and k can overlap,

É k can be multidimensional,

É several distributed delays possible

É approximated by N discrete delays τj = sjτd
∫

. . . ≈
N
∑

j=1

jτd g(sjτd, ℓ(t − sjτd), p)
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DDE-Biftool
uses formulation as differential-algebraic problem:

nonsquare,
can be singular index provided by user

state or parameter (index provided by user)

function provided by user

distributed delay,
can be used with delay

É permits multiple nested integrals as ℓ and k can overlap,

É k can be multidimensional,

É several distributed delays possible

É approximated by N discrete delays τj = sjτd
∫

. . . ≈
N
∑

j=1

jτd g(sjτd, ℓ(t − sjτd), p)



DDE-Biftool example renewal equation (RE)

Breda et al. 2016

(t) =
γ

2

∫ τ1+τ2

τ2
(s)(1 − (s))ds

implemented as

0 = (t) −
γ

2
y(t − τ2)

0 =
∫ τ1

0
(s)(1 − (s))ds − y(t)



DDE-Biftool example renewal equation (RE)
Breda et al. 2016

0 = (t) −
γ

2
y(t − τ2)

0 =
∫ τ1

0
(s)(1 − (s))ds − y(t)

p = (γ, τ1, τ2),  = (, y)
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Complex example: size structured Daphnia population model

Diekmann et al. 2010, Andò 2020

resource: ṙ(t) = ƒ0(r(t)) − ƒc(r(t))peff(mx, t),

maturation threshold: 0 = ƒthr(m(t), s(m(t), t)) − Sm,
birth rate: b(t) = peff(mx, t) − peff(m(t), t),

cohort size: s(, t) = g0() +


∫

0

gr(α, ƒr(r(t − α)))dα,

effective population: peff(, t) =


∫

0

h(α, s(α, t), r(t))b(t − α)dα.



Complex example: size structured Daphnia population model

Diekmann et al. 2010, Andò 2020

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
mortality 7

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

re
so

u
rc

e
ca

rr
y
in

g
ca

p
a
ci
ty

C

Fold of periodic orbits #unst=0
Singularity
(max of maturation age=0.53 of max)
 #unst=0
Tanscritical bifurcation #unst=0
first Hopf bifurcation #unst=0
genh



Size structured Daphnia population model: shock
Diekmann et al. 2010, Andò 2020

Individuals' size by age over time
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DDE-Biftool distributed delays conclusion

É uses interface for state-dependent delays to avoid
introducing N coupled parameters, τ(j, , p) = sjτd,

É discretized renewal equations ∼ neutral equations:

(t) =
N
∑

j=1

jτdg(sjτd, (t − sjτd), p)

⇒essential spectral radius of time-1 map > 1
⇒high-frequency instability
⇒ignore high-frequency eigenvalues of equilibria
⇒ignore Floquet multipliers with highly oscillatory
eigenfunctions.

É Renewal equations can be converted to equivalent DDEs

É vectorized g mandatory



Convergence of numerical discretization

DDE-Biftool:

̇(t) = ƒ ((t − τm), p)
time rescaling ⇒ ′(tk) = Tƒ ((tk − τm/T), p) at L × ndeg times tk

+continuity & periodicity for piecewise continuous
polynomial  with L pieces, degree ndeg.

Convergence proof for constant delay:

Engelborghs & Doedel’02: stability for linear DDEs

thought this implies convergence, but

F : (, T, p) 7→ Tƒ (((·) − τm/T), p)

is not continuously differentiable w.r.t. unknown period T

(term ′((·) − τm/T)τm/T shows up) (solved by Andò 2020)

F : Ck → Cℓ is only Ck−ℓ if k ≥ ℓ



DDEs with state-dependent delays

F()(t) = ƒ (t) t(s) := (t + s), ƒ : C→ Rn functional

is cont. diff. only if delays constant.

F()(t) = (t+(t)) ⇒ [∂F()y](t) = y(t+(t))+′(t+(t))y(t)

Instead: mild differentiability concept (Hartung et al.’06)

[∂kF()(y)k] depends on , ′, . . . , (k), y, y′, . . . , y(k−1),

(continuously), but not y(k).

Result: (0 = (∗), 0 = L(L))

É ‖L − ∗‖0,1 ∼ L−ndeg if F is ≥ ndeg times mild. diff. &
∂(∗) is invertible

É Newton iteration convergence limited by ‖L − ∗‖0,1,

⇒ better convergence for higher-accuracy solutions



DDEs with state-dependent delays

Result: (0 = (∗), 0 = L(L))

É ‖L − ∗‖0,1 ∼ L−ndeg if F is ≥ ndeg times mild. diff. &
∂(∗) is invertible

É Newton iteration convergence limited by ‖L − ∗‖0,1,

⇒ better convergence for higher-accuracy solutions

Issues:

!! L only cont. diff. if L is cont. diff., but ′L discontinuous

⇒ Jacobian ∂L(·) is discontinuous on solution space,

violates standard assumptions for convergence of
discretization and Newton iteration



DDEs with state-dependent delays — issues
All derivatives discontinuous, but converge to true solution:
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DDEs with state-dependent delays — issues
All derivatives discontinuous, but converge to true solution:
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DDEs with state-dependent delays — issues
All derivatives discontinuous, but converge to true solution:
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DDEs with state-dependent delays — issues
All derivatives discontinuous, but converge to true solution:
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DDEs with state-dependent delays — issues
All derivatives discontinuous, but converge to true solution:
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DDEs with state-dependent delays — issues
All derivatives discontinuous, but converge to true solution:
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DDEs with state-dependent delays — example error plot
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Conclusion

sourceforge.net/p/ddebiftool/git/ci/master/tree/

É bifurcation analysis for DDEs with distributed delays and
renewal equations (REs) feasible

É linear stability analysis for REs suffers instabilities

É expectation management for speed

É convergence proof of numerical method surprisingly
recent for constant delays (Andò 20), current preprint for
state-dependent delays

É difficulty: lack of continuous differentiability of r.h.s.

Happy Birthday, Gábor Stépán!

sourceforge.net/p/ddebiftool/git/ci/master/tree/

