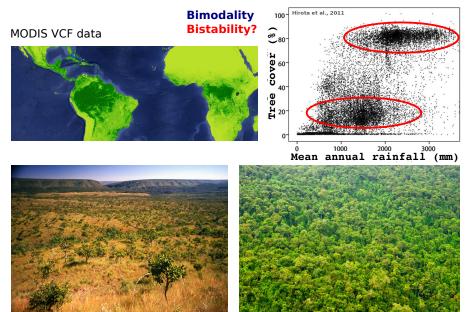
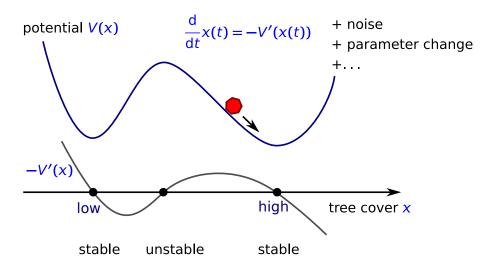
Cellular Automata for tropical forests prone to fire

Bert Wuyts & Jan Sieber


(Dynamical Systems & Analysis)

PNAS 120(45), 2023

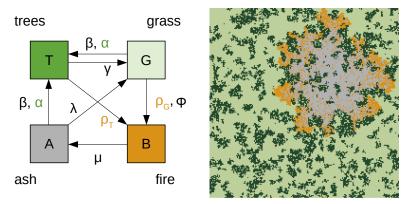


Background

Common tipping mechanism

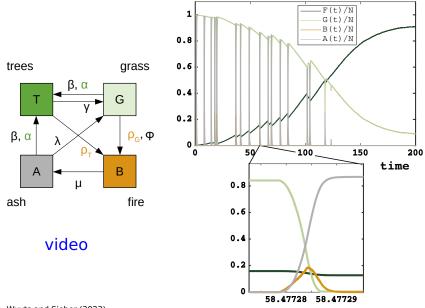
Fire feedback

- fire ignites and spreads in grassland
- trees block fires but get damaged
- fast fire spread (hours-days)
- slow tree spread (years-decades)

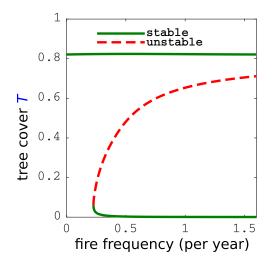

Models have **threshold parameter** for effect of fire ($\sim 40\%$ tree cover)

Motivation: percolation theory

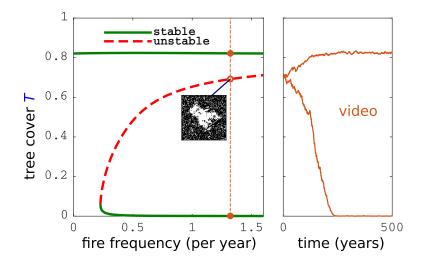
Staver and Levin (2012); Schertzer et al. (2014); Patterson et al. (2021)

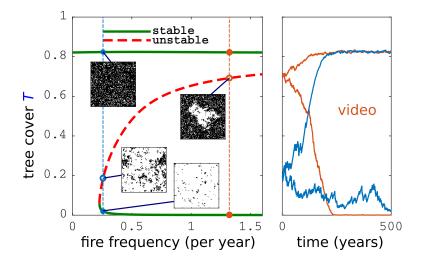

Cellular automaton — Hébert-Dufresne et al. 2018

- Square Lattice (each cell ~ 30m × 30m), N = 100
- 4 Species: Tree, Grass, Burning, Ash



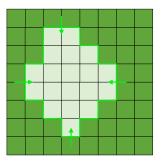
Intuition: SIS on slow timescale \leftrightarrow SIRS on fast timescale


Cellular automaton simulation


Cellular automaton — bistability


Cellular automaton — bistability

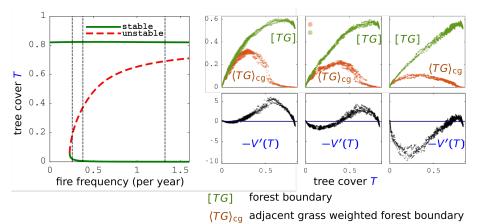
Cellular automaton — bistability


Potential V(T)

forest loss by repeated fires

$\langle TG \rangle_{cg} :=$

length of forest boundary, each cell weighted by size of adjacent grass patch



forest **gain** by growth [*TG*] := length of forest boundary

 \Rightarrow violate assumptions of percolation theory

Potential V(T)

 $\frac{\mathrm{d}}{\mathrm{d}t}T = -\mu T + \alpha_{+}[\mathrm{TG}] - \alpha_{-}(1-T)\langle TG \rangle_{\mathrm{cg}} = : -V'(T)$

Summary & implications

- adjacent grass cells cooperate by burning down
 - ⇒ long-range correlations

 \Rightarrow violation of assumptions behind mean fields & percolation theory

- Quantities determining tipping potential V(T):
 - gain: forest boundary [TG]
 - loss: grass-weighted forest boundary (TG)cg
- Implications:
 - tropical forest change and resilience can be empirically estimated from its spatial structure.
 - determine where tropical forest bistable